PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 11 > pp. 51-60

A HALF HOLLOW CYLINDRICAL ANTENNA (HHCA) ANALYSIS USING THE CFDTD ALGORITHM

By D. Mohsen, N. Ghannay, and A. Samet

Full Article PDF (690 KB)

Abstract:
In this paper, a direct three dimensional Finite-Difference Time-Domain (3D-FDTD) approach is implemented to investigate the electromagnetic behavior of a Half Hollow Cylindrical Antenna. The conformal shape of this antenna is studied using the Conformal Finite-Difference Time-Domain (CFDTD). We shall prove that a variation of the antenna shape generates an important shift of the values of the resonant frequency (about 0.467 GHz). Compared with the planar shape, the geometrical shape reduces the space occupied by the antenna of about 36,28%.

Citation:
D. Mohsen, N. Ghannay, and A. Samet, "A Half Hollow Cylindrical Antenna (HHCA) Analysis Using the CFDTD Algorithm," Progress In Electromagnetics Research C, Vol. 11, 51-60, 2009.
doi:10.2528/PIERC09090804

References:
1. Qian, Z. H., R.-S. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
doi:10.2528/PIER04080901

2. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

3. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Trans. Microwave Theory and Techniques, Vol. 38, Jul. 1990.

4. Xiao, T. and Q. H. Liu, "A staggered upwind embedded boundary (SUEB) method to eliminate the FDTD staircasing error," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 730-741, Mar. 2004.
doi:10.1109/TAP.2004.824675

5. Benkler, S., N. Chavannes, and N. Kuster, "A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1843-1849, Jun. 2006.
doi:10.1109/TAP.2006.875909

6. Benkler, S., N. Chavannes, and N. Kuster, "Mastering conformal meshing for complex CAD-based C-FDTD simulations," IEEE Antennas and Propagation Magazine, Vol. 50, No. 2, 45-47, Apr. 2008.
doi:10.1109/MAP.2008.4562256

7. El Brak, M. and M. Essaaidi, "Rigorous analysis of conformal microstrip patch antennas," Microwave and Optical Technology Letters, Vol. 37, No. 5, 372-376, 2003.
doi:10.1002/mop.10922

8. Lu, Q., X. W. Xu, and M. He, International Conference on Microwave and Millimeter Wave Technology, 2008. ICMMT 2008.,, Vol. 2, 527-530, Apr. 21{24, 2008.

9. Kashiwa, T., T. Onishi, and I. Fukai, "Analysis of microstrip antennas on a curved surface using the conformal grids FD-TD method," Antennas and Propagation Society International Symposium, 1993. AP-S. Digest, Vol. 1, 34-37, Jun. 28--Jul. 2, 1993.

10. Jurgens, T. G., A. Taflove, K. Umashankar, and T. G. Moore, "Finite-difference time-domain modeling of curved surfaces," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 4, 357-366, Apr. 1992.
doi:10.1109/8.138836

11. Dey, S., R. Mittra, and S. Chebolu, "A technique for implementing the fdtd algorithm on a nonorthogonal grid," Microwave and Optical Technology Letters, Vol. 14, No. 4, 213-215, Mar. 1997.
doi:10.1002/(SICI)1098-2760(199703)14:4<213::AID-MOP6>3.0.CO;2-M

12. Dey, S. and R. Mittra, "A modified locally conformalfinite-differenc time-domain algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave and Optical Technology Letters, Vol. 17, No. 6, Apr. 20, 1998.

13. Lu, Q., X. W. Xu, and M. He, Analysis of a probe-fed cylindrically conformal microstrip patch antenna using the conformal FDTD algorithm, 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 876-879, Aug. 2007.

14. Zagorodnov, I. A., R. Schuhmann, and T. Weiland, "A uniformly stable conformal FDTD-method in Cartesian grids," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 16, 127-141, 2003.
doi:10.1002/jnm.488

15. Zagorodnov, I., R. Schuhmann, and T. Weiland, "Conformal FDTD-methods to avoid time step reduction with and without cell enlargement," Journal of Computational Physics, Vol. 225, No. 2, 1493-1507, 2007.
doi:10.1016/j.jcp.2007.02.002

16. Dey, S. and R. Mittra, "A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave Guid. Wave Lett., Vol. 7, No. 9, 273-275, Sept. 1997.
doi:10.1109/75.622536

17. Yu, W. H. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave Compon. Lett., Vol. 11, No. 1, 25-27, Jan. 2001.
doi:10.1109/7260.905957

18. Su, T., Y. J. Liu, W. H. Yu, and R. Mittra, "A conformal mesh-generating technique for the conformal finite-difference time-domain (CFDTD) method," IEEE Antennas and Propagation Magazine, Vol. 46, No. 1, 37-49, Feb. 2004.
doi:10.1109/MAP.2004.1296143

19. Dey, S., "Efficient modeling of thin perfectly conducting sheet type of objects by using the finite-difference time-domain technique," Microwave and Optical Technology Letters, Vol. 14, No. 5, 333-336, Mar. 2001.
doi:10.1002/1098-2760(20010305)28:5<333::AID-MOP1034>3.0.CO;2-2

20. Waldschmidt, G. and A. Taflove, "Three-dimensional CAD-based mesh generator for the Dey-Mittra conformal FDTD algorithm," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1658-1661, Jul. 2004.
doi:10.1109/TAP.2004.831334

21. Taflove, A., Advances in the Finite-difference Time-domain Method, Artech House, Inc., 1998.

22. Yu, W. H. and R. Mittra, "A conformal FDTD software package modeling antennas and microstrip circuit components," IEEE Antennas and Propagation Magazine, Vol. 42, No. 5, 28-39, Oct. 2000.

23. Zhao, A. P. and A. V. Raisanen, "Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits," IEEE Microwave Theory and Techniques, Vol. 44, No. 9, 1535-1539, 1996.
doi:10.1109/22.536601

24. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley, 1997.

25. Ravard, K., C. Rostoll, R. Gillarrd, and J. Citerne, "Far field computation for the FDTD method in curvilinear coordinates," Microwave Symposium Digest, 1999 IEEE MTT-S International, 1999.


© Copyright 2010 EMW Publishing. All Rights Reserved