Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 11 > pp. 155-170


By B. Ghosh, S. N. Sinha, and M. V. Kartikeyan

Full Article PDF (804 KB)

This paper investigates the properties of probe fed cavity-backed fractal aperture antennas. The problem is formulated using the finite element-boundary integral (FE-BI) method in which the field inside the cavity is formulated using the finite element method, and the mesh is truncated at cavity aperture surface using the boundary integral method. Several dual-band cavity-backed fractal aperture antennas based on Sierpinski gasket, Sierpinski carpet, plus shape fractal and Minkowski fractal are investigated. The numerical results obtained from the FE-BI code have been validated with simulations on HFSS.

B. Ghosh, S. N. Sinha, and M. V. Kartikeyan, "Radiation from Cavity-Backed Fractal Aperture Antennas," Progress In Electromagnetics Research C, Vol. 11, 155-170, 2009.

1. Shi, S., K. Hirasawa, and Z. N. Chen, "Circularly polarized rectangularly bent slot antennas backed by a rectangular cavity," IEEE Trans. Antennas Propagat., Vol. 49, 1517-1524, Nov. 2001.

2. Takahashi, T., T. Kotani, K. Hirasawa, and S. Shi, A rectangular cavity-backed cross-loop slot antenna, Proc. IEEE Int. Symp. Antennas Propagat., 448-451, Mar. 2002.

3. Kotani, T., K. Hirasawa, and S. Song, A rectangular cavity-backed S-type slot antenna, Proc. IEEE Int. Symp. Antennas Propagat., Vol. 4, 490-493, Jun. 2003.

4. Takahashi, T. and K. Hirasawa, A broadband rectangular cavity backed meandering slot antenna, Proc. IEEE Int. Workshop Antenna Technol.: Small Antennas and Novel Metamaterials, 21-24, Mar. 2005.

5. Sundaram, A., M. Maddela, and R. Ramadoss, "Koch-fractal folded-slot antenna characteristics," IEEE Antennas Wireless Propagat. Lett., Vol. 6, 219-222, 2007.

6. Chang, D., B. Zeng, and J. Liu, "CPW-fed circular fractal slot antenna design for dual-band applications," IEEE Trans. Antennas Propagat., Vol. 56, 3630-3636, Dec. 2008.

7. Hu, R., J. Li, and S. Fan, A novel fractal folded-slot antenna using Sierpinski curves, Proc. IEEE Int. Conf. Communication Systems, 371-373, Nov. 2008.

8. Jin, J. M. and J. L. Volakis, "A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity," IEEE Trans. Antennas Propagat., Vol. 39, 1598-1604, Nov. 1991.

9. Jin, J. M., The Finite Element Method in Electromagnetics, John Wiley and Sons, New York, 2002.

10. Chatterjee, A., J. M. Jin, and J. L. Volakis, "Computation of cavity resonances using edge-based finite elements," IEEE Trans. Microw. Theory Tech., Vol. 40, 2106-2108, Nov. 1992.

11. Reddy, C. J., M. D. Deshpande, C. R. Cockrell, and F. B. Beck, Analysis of three dimensional cavity-backed aperture antennas using combined finite element method/method of moment/using combined finite element method/method of moment/geometrical theory of diffraction technique, NASA Technical Paper 3548, Hampton, Verginia, Nov. 1995.

12. Peitgen, H. O., H. Jurgens, and D. Saupe, Chaos and Fractal: New Frontiers of Science, Springer-Verlag, New York, 1992.

13. Chang, T. N., L. C. Kuo, and M. L. Chuang, "Coaxial-fed cavity backed slot antenna," Microw. Opt. Technol. Lett., Vol. 14, 291-294, Apr. 1997.

14. Gianvittorio, J. P., J. Romeu, S. Blanch, and Y. Rahmat-Samii, "Self-similar prefractal frequency selective surfaces for multiband and dual-polarized applications," IEEE Trans. Antennas Propagat., Vol. 51, 3088-3096, Nov. 2003.

© Copyright 2010 EMW Publishing. All Rights Reserved