Vol. 14
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-07-14
Source Location Estimation Using Phaseless Measurements with the Modulated Scattering Technique for Indoor Wireless Environments
By
Progress In Electromagnetics Research C, Vol. 14, 197-212, 2010
Abstract
This paper proposes a technique of the source location estimation with the modulated scattering technique (MST) for indoor wireless environments. The uniform circular scatterer array (UCSA) that consist of five optically modulated scatterers as array elements and a dipole antenna at the center of the UCSA is employed for estimating a source location from the impinging signal. In contrast with a conventional uniform circular array (UCA), the proposed method using the MST needs only one RF path. Also, the plane-wave assumption of the impinging signal is not necessary for an array signal processing because the proposed method is based on a phaseless measurement. Therefore, the proposed method can be applied in short-range LOS and NLOS environments that the plane-wave signal cannot be formed. A source location is estimated by using a simple estimation algorithm based on the power difference of the scattering signals modulated by two scatterers on the UCSA. The power difference is caused by different propagation losses between a source and each scatterer. The performance of the proposed method is demonstrated by measuring the angles of the incoming signals in the anechoic chamber and by comparing the estimated angles with the simulated results.
Citation
Jung-Hwan Choi, Byoung-Yong Park, and Seong-Ook Park, "Source Location Estimation Using Phaseless Measurements with the Modulated Scattering Technique for Indoor Wireless Environments," Progress In Electromagnetics Research C, Vol. 14, 197-212, 2010.
doi:10.2528/PIERC10060301
References

1. Bellofiore, S., J. Foutz, C. A. Balanis, and A. S. Spanias, "Smart-antenna system for mobile communication networks, part 2, beamforming and network throughput," IEEE Antennas and Propagation Magazine, Vol. 44, No. 4, 106-114, Aug., 2002.
doi:10.1109/MAP.2002.1043158

2. Kim, R. Y., J. S. Kwak, and K. Etemad, "WiMAX femtocell: requirements, challenges, and solutions," IEEE Communications Magazine, Vol. 47, No. 9, 84-91, Sep., 2009.
doi:10.1109/MCOM.2009.5277460

3. Chandrasekhar, V., J. Andrews, and A. Gatherer, "Femtocell networks: A survey," IEEE Communications Magazine, Vol. 46, No. 9, 59-67, Sep., 2008.
doi:10.1109/MCOM.2008.4623708

4. Godara, L., "Apprication of antenna arras to mobile communications, part II: Beam-forming and direction-of-arrival considerations," Proceedings of the IEEE, Vol. 85, No. 8, 1195-1245, 1997.
doi:10.1109/5.622504

5. Krim, H. and M. Viberg, "Two decades of array signal processing research," IEEE Signal Processing Magazine, Vol. 13, No. 4, 67-94, Jul., 1996.
doi:10.1109/79.526899

6. Chen, J. C., Y. Kung, and R. E. Hudson, "Source localization and beamforming," IEEE Signal Processing Magazine, Vol. 19, No. 2, 30-39, Mar., 2002.
doi:10.1109/79.985676

7. Taillefer, E., A. Hirata, and T. Ohira, "Direction-of-arrival estimation using radiation power pattern with an ESPAR antenna," IEEE Trans. Antennas and Propagation, Vol. 53, No. 2, 678-684, 2005.
doi:10.1109/TAP.2004.841312

8. Plapous, C., J. Cheng, E. Taillefer, A. Hirata, and T. Ohira, "Reactance domain MUSIC algorithm for electronically steerable parasitic array radiator," IEEE Trans. Antennas and Propagation, Vol. 52, No. 12, 3257-3264, 2004.
doi:10.1109/TAP.2004.836433

9. Hwang, S., S. Burintramart, T. K. Sarkar, and S. R. Best, "Direction of arrival (DOA) estimation using electrically small tuned dipole antennas," IEEE Trans. Antennas and Propagation, Vol. 54, No. 11, 3292-3301, 2006.
doi:10.1109/TAP.2006.883957

10. Sun, C. and N. C. Karmakar, "Direction of arrival estimation with a novel single-port smart antenna," EURASIP Journal on Applied Signal Processing, Vol. 2004, No. 9, 1364-1375, 2004.
doi:10.1155/S111086570431108X

11. Taillefer, E., W. Nomura, and M. Taromaru, "New direction-of-arrival estimation method based on the reactance-domain ESPRIT algorithm with improved subarray-configuration selection," The 9th European Conference of Wireless Technology, 55-58, 2006.
doi:10.1109/ECWT.2006.280433

12. Wu, Y. and H. C. So, "Simple and accurate two-dimensional angle estimation for a single source with uniform circular array," IEEE Antenna Wireless Propagat. Lett., Vol. 7, 78-80, 2008.

13. Hygate, G. and J. F. Nye, "Measuring fields directly with an optically modulated scatterer," Measure. Sci. Technol., Vol. 1, 703-709, 1990.
doi:10.1088/0957-0233/1/8/006

14. Choi, J. H., J. I. Moon, and S. O. Park, "Measurement of the modulated scattering microwave fields using dual-phase lock-in amplifier," IEEE Antenna Wireless Propagat. Lett., Vol. 3, 340-343, 2004.
doi:10.1109/LAWP.2004.839629

15. Bolomey, J. C. and F. E. Gardiol, Engineering Applications of the Modulated Scatterer Technique, Artech House, Norwood, MA, 2001.

16. Bolomey, J. C., B. J. Cown, G. Fine, L. Jofre, M. Mostafavi, D. Picard, J. P. Estrada, P. G. Friederich, and F. L. Cain, "Rapid near-field antenna testing via arrays of modulated scattering probes," IEEE Trans. Antennas and Propagation, Vol. 36, No. 6, 804-814, Jun., 1988.
doi:10.1109/8.1182

17. Qiang, C., K. Sawaya, T. Habu, and R. Hasumi, "Simultaneous electromagnetic measurement using a parallel modulated probe array," IEEE Trans. Electomagn. Compat., Vol. 49, 263-269, 2007.

18. Jiang, J. S. and M. A. Ingram, "Spherical-wave model for short-range MIMO," IEEE Trans. Commun., Vol. 53, No. 9, 1534-1541, 2005.
doi:10.1109/TCOMM.2005.852842

19. Bohagen, F., P. Orten, and G. E. Oien, "On spherical vs. plane wave modeling of line-of-sight MIMO channels," IEEE Trans. Commun., Vol. 57, No. 3, 841-849, 2009.
doi:10.1109/TCOMM.2009.03.070062

20. Balanis, C. A., Antenna Theory, Analysis, and Design, 2nd Ed., Wiley, New York, 1997.

21. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular arrays," IEEE Trans. Signal Process., Vol. 42, No. 9, 2395-2407, Sep., 1994.
doi:10.1109/78.317861

22. Du, K. L., "Pattern analysis of uniform circular array," IEEE Trans. Antennas and Propagation, Vol. 52, No. 4, 1125-1129, 2004.
doi:10.1109/TAP.2004.825802

23. Lazaro, A., D. Girbau, and D. Salinas, "Radio link budgets for UHF RFID on multipath environments," IEEE Trans. Antennas and Propagation, Vol. 57, No. 4, 1241-1251, 2009.
doi:10.1109/TAP.2009.2015818

24. Azaro, R., S. Caorsi, and M. Pastorino, "On the relationship for the bistatic modulated scattering technique in scattering applications using scattering properties of antennas," IEEE Trans. Antennas and Propagation, Vol. 46, 1399-1400, Sep., 1998.
doi:10.1109/8.719991

25. Lin, D. and R. Juang, "Mobile location estimation based on differences of signal attenuations for GSM systems," IEEE Trans. Vehicular Tech., Vol. 54, No. 4, 1447-1454, 2005.
doi:10.1109/TVT.2005.851318

26. Lin, H., S. Chen, D. Lin, and H. Lin, "Multidimensional scaling algorithm for mobile location based on hybrid SADOA/TOA measurement," IEEE Wireless Communications and Networking Conference, 3015-3020, 2008.
doi:10.1109/WCNC.2008.527

27. Caffery, J. J., "A new approach to the geometry of TOA location," Proc. IEEE Vehicular Tech. Conference, Vol. 4, 1943-1949, 2000.