PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 17 > pp. 229-244

ANALYSIS AND DESIGN OF A GAUSSIAN BACKSCATTER ANTENNA WITH RING FOCUS FEED

By W. Thaiwirot, R. Wongsan, and M. Krairiksh

Full Article PDF (541 KB)

Abstract:
This paper presents analysis and design of a Gaussian backscatter antenna with ring focus feed. The curvature of main reflector is Gaussian, and the subreflector is a portion of an ellipse. The antenna has axial symmetry. A backscattering technique is used with the main reflector to achieve wide beamwidth. The input parameters of the proposed antenna are derived in closed form. Physical theory of diffraction (PTD) is used to analyze the radiation pattern of the proposed antenna and verified with experimental results. The effects of the support structures on the radiation patterns of the proposed antenna have been investigated experimentally. The proposed antenna can produces high gain and wide beamwidth (coverage angle θ=±65°). This antenna can be used for realizing earth coverage beam in LEO satellite or indoor wireless LAN applications.

Citation:
W. Thaiwirot, R. Wongsan, and M. Krairiksh, "Analysis and Design of a Gaussian Backscatter Antenna with Ring Focus Feed," Progress In Electromagnetics Research C, Vol. 17, 229-244, 2010.
doi:10.2528/PIERC10082703

References:
1. Hay, S. G., D. G. Bateman, T. S. Bird, and F. R. Cooray, Simple Ka-band earth coverage antennas for LEO satellites, IEEE Antennas Propag. Soc. Int. Symp., Vol. 1, 11-16, 1999.

2. Bird, T. S., J. S. Kot, N. Nikolic, G. L. James, and S. J. Barke, Millimeter-wave antenna and propagation studies for indoor wireless LANs, Antennas Propag. Soc. Int. Symp., Vol. 1, 336-339, 1994.

3. Smulders, P. F. M., S. Khusial, and M. H. A. J. Herben, "A shaped reflector antenna for 60-GHz indoor wireless LAN access points," IEEE Trans. on Vehicular Technology, Vol. 50, 584-591, 2001.
doi:10.1109/25.923070

4. Thaivirot, V., P. Krachodnok, and R. Wongsan, "Radiation pattern synthesis from various shaped reflectors base on PO and PTD methods for point-to-multipoint applications," WSEAS Transactions on Communications, Vol. 7, 531-540, 2008.

5. Moreira, F. J. S., A. Prata, and Jr., "Generalized classical axially symmetric Dual-reflector antennas," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 4, 547-554, 2001.
doi:10.1109/8.923314

6. Prata, Jr., A., J. S. Moreira, and L. R. Amaro, "Displace-axis-ellipse reflector antenna for spacecraft communications," Proceedings SBMO/IEEE MTT-S IMOC 2003, Vol. 1, 391-395, 2003.

7. Popov, A. P. and T. Milligan, "Amplitude aperture-distribution control in displaced-axis two reflector antenna," IEEE Antennas and Propag. Magazine, Vol. 39, No. 6, 58-63, 1997.
doi:10.1109/74.646802

8. Granet, C., "A simple procedure for the design of classical displaced-axis dual-reflector antennas using a set of geometric parameters ," IEEE Antennas and Propag. Magazine, Vol. 41, No. 6, 64-71, 1999.
doi:10.1109/74.815319

9. Brown, K. W., A. Prata, and Jr., "A design procedure for classical offset dual-reflector antennas with circular apertures," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 8, 1145-1153, 1994.
doi:10.1109/8.310006

10. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116

11. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," IEEE Proc., Vol. 63, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

12. Ahluwalia, D. S., R. M. Lewis, and J. Boersma, "Uniform asymptotic theory of diffraction by a plane screen," SIAM J. Appl. Math., Vol. 16, 783-807, 1968.
doi:10.1137/0116065

13. Ufimtsev, P. Y., "Method of edge waves in the physical theory of diffraction," Izd-Vo Sovyetskoye Radio, (Translation prepared by the U.S. Air Force Foreign Technology Division Wright Patterson, AFB, OH, 1971; available from NTIS, Spring¯eld, VA 22161, AD733203), 1-243, 1962.

14. Ando, M., "Radiation pattern analysis of reflector antennas," Electronics and Communications in Japan, Part 1, Vol. 68, No. 4, 93-102, 1985.

15. Breinbjerg, O., Y. Rahmat-Samii, and J. A. Appel-Hansen, Theoretical examination of the physical theory of diffraction and related equivalent currents, Rep. R339, Technical University of Denmark, Lyngby, 1987.

16. Mitzner, K. M., Incremental length diffraction coefficients, Tech. Rep. AFAI-TR, 73-296, Aircraft Division Northrop Corp., 1974.

17. Michaeli, A., "Elimination of infinities in equivalent edge currents, Part II: Physical optics current components ," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 8, 1034-1037, 1984.
doi:10.1109/TAP.1986.1143941

18. Knott, E. F., "The relationship between Mitzner's ILDC and Michaeli's equivalent currents," IEEE Transactions on Antennas and Propagation, Vol. 33, 112-114, 1985.
doi:10.1109/TAP.1985.1143482

19. Rahmat-Samii, Y. and R. Mittra, "A spectral domain interpretation of high frequency diffraction phenomena," IEEE Transactions on Antennas and Propagation, Vol. 25, 676-687, 1977.
doi:10.1109/TAP.1977.1141667

20. Michaeli, A., "Elimination of infinities in equivalent edge currents, Part I: fringe current components," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 7, 912-918, 1986.
doi:10.1109/TAP.1986.1143913

21. Duan, D. W., Y. Rahmat-Samii, and J. P. Mahon, "Scattering from a circular disk: A comparative study of PTD and GTD techniques ," Proceeding of the IEEE, Vol. 79, No. 10, 1472-1480, 1991.
doi:10.1109/5.104222


© Copyright 2010 EMW Publishing. All Rights Reserved