Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 16 > pp. 161-169


By J.-Y. Li, W.-J. Lin, M.-P. Houng, and L.-S. Chen

Full Article PDF (357 KB)

This work presents an ultra-wideband (UWB) low noise amplifier (LNA) with active shunt-feedback technique for wideband and flat gain by using standard 0.18 μm CMOS processes. Different from past resistive shunt-feedback technique, the capacitor supersedes by a transistor in active shunt-feedback technique. The active shunt-feedback provides input matching generating a 50 Ω real part with proper design and achieves flat gain from 2.5 GHz to 12 GHz. The UWB LNA achieved 11.4±0.2 dB gains, 4.5~5.2 dB noise figure (NF), 13.5 mW power consumption at frequency 3.1 GHz to 10.6 GHz, -15 dBm of 1-dB compression point (P1dB), and -3 dBm of input third intercept point (IIP3) at 6 GHz. The chip size including pads is only 0.6×0.5 mm2.

J.-Y. Li, W.-J. Lin, M.-P. Houng, and L.-S. Chen, "A Compact Wideband Matching 0.18-μM CMOS UWB Low-Noise Amplifier Using Active Feedback Technique," Progress In Electromagnetics Research C, Vol. 16, 161-169, 2010.

1. Dorafshan, A. and M. Soleimani, "High-gain CMOS low noise amplifier for ultra wide-band wireless receiver," Progress In Electromagnetics Research C, Vol. 7, 183-191, 2009.

2. Chen, K. H., J. H. Lu, B. J. Chen, and S.-I. Liu, "An ultra-wide-band 0.4-10-GHz LNA in 0.18-μm CMOS," IEEE Transactions on Circuits and System, Vol. 54, No. 3, 217-220, 2007.

3. Kim, C. W., M. S. Kang, P. T. Anh, H. T. Kim, and S.-G. Lee, "An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system," IEEE J. Solid-State Circuits, Vol. 40, No. 2, 544-547, 2005.

4. Borremans, J., P. Wambacq, C. Soens, Y. Rolain, and M. Kuijk, "Low-area active-feedback low-noise amplifier design in scaled digital CMOS," IEEE J. Solid-State Circuits, Vol. 43, No. 11, 2422-2433, 2008.

5. Yong, G. S. K. and C. E. Saavedra, "A compact capacitor compensated wideband balun in CMOS technology," 24th Biennial Symposium on Communications, 306-309, 2008.

6. Meaamar, A., B. C. Chye, D. M. Anh, and K. S. Yeo, "A 3--8 GHz low-noise CMOS amplifier," IEEE Microw. Wirel. Compon. Lett., Vol. 19, No. 4, 245-247, 2009.

7. Perumana, B. G., J. H. C. Zhan, S. S. Taylor, B. R. Charlton, and J. Laskar, "Resistive-feedback CMOS low-noise amplifier for multiband applications," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 5, 1218-1225, 2008.

8. Cui, Y., G. Niu, Y. Li, S. S. Taylor, Q. Liang, and J. D. Cressler, "On the excess noise factor and noise parameter equations for RF CMOS," Silicon Monolithic Integr. Circuits RF Syst. Top. Meeting, 40-43, 2007.

9. Lin, Y. J., S. S. H. Hsu, J. D. Jin, and C. Y. Chan, "A 3.1--10.6 ultra-wideband CMOS low noise amplifier with current-reused technique," IEEE Microw. Wire. Compon. Lett., Vol. 17, No. 3, 232-234, 2007.

10. Lin, Y. L., H. Y. Liao, and H.-K. Chiou, "Bridged-shunt-series peaking technique for a 3.1--10.6 GHz ultra-wideband CMOS low noise amplifier," Microwave Opt. Technol. Lett., Vol. 50, No. 3, 575-578, 2008.

11. Hsu, M.-T. and S.-K. Lin, "A low-power wideband CMOS low-noise amplifier using current-reused technique," Microwave Opt. Technol. Lett., Vol. 51, No. 9, 2077-2080, 2009.

© Copyright 2010 EMW Publishing. All Rights Reserved