PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 23 > pp. 205-217

FRACTAL-SHAPED COMPLEMENTARY ELECTRIC-LC RESONATOR FOR BANDSTOP FILTER

By H.-X. Xu, G.-M. Wang, and Q. Peng

Full Article PDF (963 KB)

Abstract:
An equivalent circuit model for single negative metamaterial (MTM) transmission line based on microstrip complementary electric inductive-capacitive resonator (CELC) is proposed for the first time. The verified circuit model gives strong support to the interpretation of all exhibited electromagnetic (EM) phenomena. The nonpure magnetic and electric resonances have been demonstrated by constitutive EM parameters. Based on the conclusions that have drawn, a more compact sub-wavelength particle based on Hilbert-shaped CELC (H-CELC) is proposed. The design procedures of the H-CELC-loaded MTM cell are derived based on the circuit model. For application, a bandstop filter covering one of the ISM bands 5.2 GHz by cascading two H-CELC cells is designed, fabricated and measured. Consistent results between simulation and measurement have confirmed the design. The established theory based on the proposed circuit model is of reference value for the design of novel bandstop devices.

Citation:
H.-X. Xu, G.-M. Wang, and Q. Peng, "Fractal-Shaped Complementary Electric-LC Resonator for Bandstop Filter," Progress In Electromagnetics Research C, Vol. 23, 205-217, 2011.
doi:10.2528/PIERC11052006

References:
1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Caloz, C. and T. Itoh, Application of the transmission line theory of left-handed materials to the realization of a microstrip `LH line' , IEEE AP-S Int. Symp. Dig., 412-415, 2002.

4. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marque's, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401

5. Messiha, N. T., A. M. Ghuniem, and H. M. El-Hennawy, "Planar transmission line medium with negative refractive index based on complementary omega-like structure," IEEE Microw. Wirel. Compon. Lett., Vol. 18, 575-577, 2008.
doi:10.1109/LMWC.2008.2002446

6. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett., Vol. 88, 041109, 2006.
doi:10.1063/1.2166681

7. Hand, T. H., J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, "Characterization of complementary electric field coupled resonate surface ," Appl. Phys. Lett., Vol. 93, 212504, 2008.
doi:10.1063/1.3037215

8. Chen, H.-T., J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials," Optics Express, Vol. 15, 1084-1095, 2007.
doi:10.1364/OE.15.001084

9. Lu, M., J. Y. Chin, R. Liu, and T. J. Cui, A microstrip phase shifter using complementary metamaterials, Proceedings of International Conference on Microwave and Millimeter Wave, 1569-1571, Nanjing, China, April 21{24, 2008.

10. An, J., G.-M. Wang, W.-D. Zeng, and L.-X. Ma, "UWB filter using defected ground structure of Von Koch fractal shaped slot," Progress In Electromagnetics Research Letters, Vol. 61, 61-66, 2009.
doi:10.2528/PIERL08121309

11. Jahanbakht, M. and M. N. Moghaddasi, "Fractal beam KU-band MEMS phase shifter," Progress In Electromagnetics Research Letters, Vol. 5, 73-85, 2008.
doi:10.2528/PIERL08101703

12. Chen, W.-L., G.-M. Wang, and C.-X. Zhang, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna with a fractal-shaped slot," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2176-2179, Jul. 2009.
doi:10.1109/TAP.2009.2021974

13. Kordzadeh, A. and F. Hojat Kashani, "A new reduced size microstrip patch antenna with fractal shaped defects," Progress In Electromagnetics Research B, Vol. 11, 29-37, 2009.
doi:10.2528/PIERB08100501

14. Xu, H.-X., G.-M. Wang, and K. Lu, "Tunable low-pass filter using fractal shaped complementary split ring resonator with ultra-wide stop-band and excellent selectivity," International Conference on Ultra-wide Band Technology, Vol. 2, 694-696, Sep. 2010.

15. Xu, H.-X., G.-M. Wang, C.-X. Zhang, and J.-G. Liang, "Hilbert-shaped complementary ring resonator and application to enhanced-performance low pass filter with high selectivity," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 7, No. 6, 399-406, 2011.
doi:10.1002/mmce.20529

16. Xu, H.-X., G.-M. Wang, and J.-G. Liang, "Novel CRLH TL metamaterial and compact microstrip branch-line coupler application," Progress In Electromagnetics Research C, Vol. 20, 173-186, 2011.

17. Chen, X. D., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials ," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

18. Woo, D.-J., T.-K. Lee, J.-W. Lee, C.-S. Pyo, and W.-K. Choi, "Novel u-slot and v-slot DGSs for bandstop filter with improved Q factor," IEEE Trans. Microwave Theory Tech., Vol. 54, 2840-2847, 2006.
doi:10.1109/TMTT.2006.875450

19. Karmakar, N. C., "Theoretical investigations into binomial distributions of photonic bandgaps in microstrip line structures," Microw. Opt. Technol. Lett., Vol. 33, 191-196, 2002.
doi:10.1002/mop.10273


© Copyright 2010 EMW Publishing. All Rights Reserved