PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 23 > pp. 123-135

3D FEM MODELING AND TECHNOLOGY OF PIEZOELECTRIC RING MEMS ANTENNA

By A. Massaro, R. Cingolani, and A. Passaseo

Full Article PDF (592 KB)

Abstract:
Actually MEMS technology allows to fabricate free standing and bended cantilevers by acting on stress/strain properties and thicknesses of materials. In particular, by means of MEMS technology it is possible to realize ring or spiral layouts with piezoelectric materials. The mechanical movement due to the piezoelectric resonance can be used in order to modulate a signal travelling in the MEMS and radiating in the free space as happens in antennas. In this work we provide an accurate study regarding the design approach of piezoelectric aluminium nitride (AlN) ring antenna. The study is developed by means of a tailored 3D FEM tool which allows to analyze the piezoelectric resonances and to design the ring micro-antenna in the THz range. Finally we provide the technology and we measure the piezoelectric resonances of ring antennas.

Citation:
A. Massaro, R. Cingolani, and A. Passaseo, "3D FEM Modeling and Technology of Piezoelectric Ring MEMS Antenna," Progress In Electromagnetics Research C, Vol. 23, 123-135, 2011.
doi:10.2528/PIERC11063003

References:
1. Piazza, G., P. J. Stephanou, and A. P. Pisano, "Single-chip multiple frequency ALN MEMS filters based on contour-mode piezoelectric resonators," IEEE J. Microelectromech. Syst., Vol. 16, No. 2, 319-328, 2007.
doi:10.1109/JMEMS.2006.889503

2. Piazza, G., P. J. Stephanou, and A. P. Pisano, "Piezoelectric aluminum nitride vibrating contour mode MEMS resonators," IEEE J. Microelectromech. Syst., Vol. 15, No. 6, 319-328, 2007.
doi:10.1109/JMEMS.2006.889503

3. Piazza, G., P. J. Stephanou, and A. P. Pisano, Aluminum Nitride contour-mode vibrating RF MEMS, IEEE MTT-S Proc. Int. Microw. Symp. Dig., 664-667, 2006.

4. Lakin, K. M., Coupled resonator filters, Proc. Ultrason. Symp., Vol. 1, 901-908, 2002.

5. Cady, W. G., Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, McGraw-Hill, New York, 1946.

6. Johnson, R. A., Mechanical Filters in Electronics, Wiley, New York, 1983.

7. Li, X.-Q., Q.-X. Liu, X.-J. Wu, L. Zhao, J.-Q. Zhang, and Z.-Q. Zhang, "A GW level high-power radial line helical array antenna," IEEE Trans. Antennas and Propag., Vol. 56, No. 9, 2943-2948, 2008.
doi:10.1109/TAP.2008.928781

8. Clark, R. L. and R. N. Dean, Three dimensional micromachined electromagnetic device and associated methods, US Patent, US 6,271,802 B1, Aug. 7, 2001.

9. Bell, J. M. and M. F. Iskander, "A low-profile Archimedean spiral antenna using an EBG ground plane," IEEE Trans. Antennas and Propag., Vol. 3, 223-226, 2004.

10. Hirose, K., A. Kimizuka, and H. Nakano, "Microstrip-line antennas with loop elements," IEEE Int. Antennas and Propag. Symp., 721-724, 2007.
doi:10.1109/APS.2007.4395595

11. Mittleman, D. and K. Wang, "A method for coupling Terahertz pulses into a coaxial waveguide," Int. Patent, WO 2006/019776 A2, 2008.

12. Jung, C. W., M.-J. Lee, G. P. Li, and F. de Flaviis, "Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches ," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 455-463, 2006.
doi:10.1109/TAP.2005.863407

13. Balanis, C. A., Antenna Theory, Analysis and Design, 2nd Ed., Ch. 4, John Wiley & Sons, New York, 1997.

14. Massaro, A., I. Ingrosso, C. Giordano, M. T. Todaro, R. Cingolani, M. de Vittorio, and A. Passaseo, "Micromachining Mo/AlN/Mo piezoelectric ring resonators," Proc. of EuMA 2009, 1646-1649, 2009.

15. Jung, C. W., M.-J. Lee, G. P. Li, and F. de Flaviis, "Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches ," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 455-463, 2006.
doi:10.1109/TAP.2005.863407


© Copyright 2010 EMW Publishing. All Rights Reserved