Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 26 > pp. 219-228


By A. Treizebre, S. Laurette, Y. Xu, R. G. Bosisio, and B. Bocquet

Full Article PDF (729 KB)

Terahertz spectroscopy is a new tool for real time biological analysis. Unfortunately, investigations on aqueous solutions remain difficult and need to work on nanovolumes. Integrated Terahertz instrumentation remains a challenge. We demonstrate that Planar Goubau Line (PGL) technology could bring a real practical solution to reach this goal. This study provides the design, fabrication and test results of passive PGL components like loads and power divider. These PGL components are designed, simulated, fabricated and measured with a Vectorial network analyser (VNA). Simulation and test data support PGL component designs. PGL components operate over a wide frequency range from 0.06 to 0.325 THz.

A. Treizebre, S. Laurette, Y. Xu, R. G. Bosisio, and B. Bocquet, "THz Power Divider Circuits on Planar Goubau Lines (Pgls)," Progress In Electromagnetics Research C, Vol. 26, 219-228, 2012.

1. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Microwave Theory and Techniques, Vol. 52, No. 10, 2438-2447, 2004.

2. Laurette, S., A. Treizebre, F. Affouard, and B. Bocquet, "Subterahertz characterization of ethanol hydration layers by microfluidic system," Applied Physics Letters, Vol. 97, No. 11, 111904-1-111904-3, 2010.

3. George, P. A., W. Hui, F. Rana, B. G. Hawkins, A. E. Smith, and B. J. Kirby, "Microfluidic devices for terahertz spectroscopy of biomolecules," Optics Express, Vol. 16, No. 3, 1577-1582, 2008.

4. Nagel, M., P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, "Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization," Applied Optics, Vol. 41, No. 10, 2074-2078, 2002.

5. Treizebre, A., M. Hofman, and B. Bocquet, "Terahertz spiral planar Goubau line rejectors for biological characterization," Progress In Electromagnetics Research M, Vol. 14, 163-176, 2010.

6. Laurette, S., A. Treizebre, and B. Bocquet, "Co-integrated microfluidic and THz functions for biochip devices," Journal of Micromechanics and Microengineering, Vol. 21, No. 6, 2011.

7. Xu, Y., C. Nerguizian, and R. G. Bosisio, "Wideband planar Goubau line integrated circuit components at millimetre waves," IET Microwaves, Antennas and Propagation, Vol. 5, No. 8, 882-885, 2011.

8. Treizebre, A. and B. Bocquet, "Nanometric metal wire as a guide for THz investigation of living cells," International Journal of Nanotechnology, Vol. 5, No. 6-8, 784-795, 2008.

9. Bosisio, R. G., Y. Y. Zhao, X. Y. Xu, S. Abielmona, E. Moldovan, Y. S. Xu, M. Bozzi, C. Nerguizian, S. O. Tatu, J. F. Frigon, C. Caloz, and K. W, "New wave radio," IEEE Microwave Magazine, 91-100, 2008.

10. Goubau, G., "Open wire lines," IEEE Microwave Theory and Techniques, Vol. 4, No. 4, 197-200, 1956.

11. Xu, Y. and R. G. Bosisio, "A study of planar Goubau lines (PGL) for millimeter and sub-millimeter wave integrated circuits (IC)," Microwave and Optical Technology Letters, Vol. 43, No. 4, 290-293, 2004.

12. Treizebre, A., B. Bocquet, Y. Xu, and R. G. Bosisio, "New THz excitation of planar Goubau line," Microwave and Optical Technology Letters, Vol. 50, No. 11, 2988-3001, 2008.

13. Bianco, B. and M. Parodi, "Determination of the propagation constant of uniform microstrip lines," Alta Frequenza, Vol. 45, 107-110, Feb. 1976.

© Copyright 2010 EMW Publishing. All Rights Reserved