Vol. 28
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-03-16
Wideband Impedance Matching in Transient Regime of Active Circuit Using Lossy Nonuniform Multiconductor Transmission Lines
By
Progress In Electromagnetics Research C, Vol. 28, 27-45, 2012
Abstract
This paper focuses on the electromagnetic compatibility domain, coupling in microwave circuits and wideband (WB) impedance matching in time domain using a purely temporal method, such as the centered-points Finite Difference Time Domain (FDTD). The paper here presents a new approach of WB impedance matching in transient regime and coupling context, of active circuits such as multiple complex nonlinear components (represented here by metal semiconductor field-effect transistors (MESFETs)), using Nonuniform Multiconductor Transmission Lines (NMTL) with frequency dependent losses and FDTD as modeling method. The FDTD method has several positive aspects such as the ease to introduce nonlinear components in the algorithm, the ease to use NMTL and the gain in simulation time and memory space. Also the FDTD method allows the study of WB impedance matching in time domain without recourse to the frequency domain. Systematic comparisons of the results of this method with those obtained by PSpice are done to validate this study. These comparisons show a good agreement between the method presented here and PSpice. The technique presented in this paper shows higher efficiency and ease to implement when compared to PSpice in regard to the treatment of frequency dependent losses, or shapes of transmission lines.
Citation
Amine Amharech, and Hassane Kabbaj, "Wideband Impedance Matching in Transient Regime of Active Circuit Using Lossy Nonuniform Multiconductor Transmission Lines," Progress In Electromagnetics Research C, Vol. 28, 27-45, 2012.
doi:10.2528/PIERC11121607
References

1. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, 1996, Jun. 2001.
doi:10.1109/9780470544662

2. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 1990.

3. Liao, S. Y., Microwave Circuit Analysis and Amplifier Design, Prentice-Hall, 1987.

4. Ha, T. T., Solid-State Microwave Amplifier Design, John Wiley & Sons, 1981.

5. Khalaj-Amirhosseini, M., "Wideband or multiband complex impedance matching using microstrip nonuniform transmission lines ," Progress In Electromagnetics Research, Vol. 66, 15-25, 2006.
doi:10.2528/PIER06081503

6. Huang, X.-D., X.-H. Jin, and C.-H. Cheng, "Novel impedance matching scheme for patch antennas," Progress In Electromagnetics Research Letters, Vol. 14, 155-163, 2010.
doi:10.2528/PIERL10040801

7. Zhang, B., "A D-band power amplifier with 30-GHz band-width and 4.5-DBM Psat for high-speed communication system," Progress In Electromagnetics Research, Vol. 107, 161-178, 2010.
doi:10.2528/PIER10060806

8. Reynolds, S. K., B. A. Floyd, U. R. Pfeiffer, T. Beukema, J. Grzyb, C. Haymes, B. Gaucher, and M. Soyuer , "A silicon 60-GHz receiver and transmitter chipset for broadband communications," IEEE J. Solid-State Circuits, Vol. 41, No. 12, 2820-2831, Dec. 2006.
doi:10.1109/JSSC.2006.884820

9. Powell, J., H. Kim, and C. G. Sodini, "SiGe receiver front ends for millimeter-wave passive imaging," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2416-2425, Nov. 2008.
doi:10.1109/TMTT.2008.2006103

10. Nicolson, S. T., A. Tomkins, K. W. Tang, A. Cathelin, D. Belot, and S. P. Voinigescu, "A 1.2 V, 140 GHz receiver with on-die antenna in 65nm CMOS," IEEE Radio Frequency Integrated Circuits Symposium, 229-232, Jun. 2008.
doi:10.1109/RFIC.2008.4561424

11. Lin, Y.-J., S. S. H. Hsu, J.-D. Jin, and C. Y. Chan, "A 3.1-10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique," IEEE Microwave and Wireless Components Letters , Vol. 17, No. 3, 232-234, Mar. 2007.
doi:10.1109/LMWC.2006.890503

12. Nahman, N. and D. Holt, "Transient analysis of coaxial cables using the skin effect approximation A + B√s," IEEE Tran. on Circuit Theory, Vol. 19, No. 5, 443-451, Sept. 1972.
doi:10.1109/TCT.1972.1083513

13. Yu, Q. and O. Wing, "Computational models of transmission lines with skin effect and dielectric loss," IEEE Trans. on Circuits And Systems - I: Fundamental Theory and Applications, Vol. 41, No. 2, 107-119, Feb. 1994.
doi:10.1109/81.269047

14. Orlando, A. and C. R. Paul, "FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads," IEEE Trans. Electromagnetic Comp., Vol. 38, No. 3, 388-399, Aug. 1996.
doi:10.1109/15.536069

15. Li, K., M. A. Tassoudji, R. T. Shin, and J. A. Kong, "Simulation of electromagnetic radiation and scattering using a finite difference time domain technique," Comput. Appl. in Eng. Education, Vol. 1, No. 1, 45-62, Sept./Oct. 1992..

16. Kabbaj, H. and J. Zimmermann, "Time-domain study of lossy nonuniform multiconductor transmission lines with complex nonlinear loads," Microwave and Optical Technology Letters, Vol. 29, No. 5, 296-301.
doi:10.1002/mop.1160

17. Amharech, A. and H. Kabbaj, "Analysis of multiconductor transmission line loaded by multi MESFET transistors modeled by their large signal scheme: An FDTD approach," International Journal on Communications Antenna and Propagation, Vol. 1, No. 3, 2011.

18. Kuo, C. N., B. Houshmand, and T. Itoh, "Full-wave analysis of packaged microwave circuits with active and nonlinear devices: An FDTD approach," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 5, 819-826, May 1997.
doi:10.1109/22.575606

19. Su, H.-H., C.-W. Kuo, and T. Kitazawa, "A novel approach for modeling diodes into FDTD method," PIERS Proceedings, Marrakesh, Morocco, Mar. 20-23, 2011.