Vol. 41
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-06-27
Bandwidth Improvement of a Compact Quadrature Hybrid Coupler with Harmonic Rejection Using Lumped Elements
By
Progress In Electromagnetics Research C, Vol. 41, 121-135, 2013
Abstract
A compact quadrature hybrid coupler with harmonic suppression adopting lumped-element band-stop resonator is proposed aiming for bandwidth improvement. Conventionally, harmonic rejection is realized by three band-stop resonators in lumped hybrid design. The using of three band-stop resonators can realize better harmonic suppression while exhibiting narrower frequency response. So as to improve operation bandwidth performance, the number of band-stop resonator applied in this proposed topology is minimized to one. Trading off with acceptable reduction in harmonic rejection, the proposed hybrid can enlarge working bandwidth with fewer lumped devices. Detailed design and theoretical analysis are presented and the expressions of lumped elements with dependence of rejected harmonic frequency are obtained. To validate the analysis, three 2.45 GHz couplers are fabricated on an FR-4 printed circuit board. The experimental results exhibit 27.3%, 26.9% and 23.3% operation bandwidth with better than 16 dB, 17 dB, and 21 dB harmonic suppressions at 4.9 GHz, 6.1 GHz, and 7.35 GHz, respectively. Less than 0.8 dB amplitude imbalance and 2° phase error are achieved over the whole operation frequency for the all three couplers, which are matched well with theoretical analysis.
Citation
Yu Ye, Ling-Yun Li, Jian-Zhong Gu, and Xiao-Wei Sun, "Bandwidth Improvement of a Compact Quadrature Hybrid Coupler with Harmonic Rejection Using Lumped Elements," Progress In Electromagnetics Research C, Vol. 41, 121-135, 2013.
doi:10.2528/PIERC13051705
References

1. Ozis, D., J. Paramesh, and D. J. Allstot, "Integrated quadrature couplers and their application in image-reject receivers," IEEE J. Solid-State Circuits., Vol. 44, No. 5, 1464-1476, May 2009.
doi:10.1109/JSSC.2009.2016705

2. Chang, C.-W., Y.-J. E. Chen, and J.-H. Chen, "A power-recycling technique for improving power amplifier efficiency under load mismatch," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 10, 571-573, Oct. 2011.
doi:10.1109/LMWC.2011.2165535

3. Bulus, U., O. Kizilbey, H. Aniktar, and A. Gunes, "Broadband direction-finding antenna using suspended microstrip-line hybrid coupler for handheld devices," IEEE Antennas Wireless Propag. Lett., Vol. 12, 80-83, 2013.
doi:10.1109/LAWP.2013.2242840

4. Shu, P. and Q. Feng, "Design of a compact quad-band hybrid antenna for compass/WiMAX/MLAN applications," Progress In Electromagnetics Research, Vol. 138, 585-598, 2013.

5. Wong, Y. S., S. Y. Zheng, and W. S. Chan, "Multifolded bandwidth branch line coupler with filtering characteristic using coupled port feeding," Progress In Electromagnetics Research, Vol. 118, 17-35, 2011.
doi:10.2528/PIER11041401

6. Cheng, Y. J., L. Wang, J. Wu, and Y. Fan, "Directional coupler with good restraint outside the passband and its frequency-agile application," Progress In Electromagnetics Research, Vol. 135, 759-771, 2013.

7. Wang, W.-H., T.-M. Huang, and R.-B. Wu, "Miniatured rat-race coupler with bandpass response and good stopband rejection," IEEE MTT-S Int. Microwave Symp. Dig., 709-712, 2009.

8. Kuo, J.-T., J.-S. Wu, and Y.-C. Chiou, "Miniaturized rat race coupler with suppression of spurious passband," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 1, 46-48, Aug. 2007.
doi:10.1109/LMWC.2006.887254

9. Sung, Y. J., C. S. Ahn, and Y.-S. Kim, "Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 1, 7-9, Jan. 2004.
doi:10.1109/LMWC.2003.821499

10. Gu, , J.-Z. and X.-W. Sun, "Miniaturization and harmonic suppression rat-race coupler using C-SCMRC resonators with distributive equivalent circuit," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 12, 880-882, Dec. 2005.
doi:10.1109/LMWC.2005.859980

11. Chiu, H.-C., C.-H. Lai, and T.-G. Ma, "Miniaturized ratrace coupler with out-of-band suppression using double-layer synthesized coplanar waveguides," IEEE MTT-S Int. Microwave Symp. Dig., 2012.

12. Wang, J., B.-Z. Wang, Y.-X. Guo, L. C. Ong, and S. Q. Xiao, "A compact slow-wave microstrip branch-line coupler with high performance," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 7, 501-503, Jul. 2007.
doi:10.1109/LMWC.2007.899307

13. Tsai, K.-Y., H.-S. Yang, J.-H. Chen, and Y.-J. E. Chen, "A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 10, 537-539, Oct. 2011.
doi:10.1109/LMWC.2011.2164901

14. Hazeri, A. R. and T. Faraji, "Miniaturization and harmonic suppression of the branch-line hybrid coupler," Int. J. Electron, Vol. 98, No. 12, 1699-1710, Dec. 2011.
doi:10.1080/00207217.2011.609968

15. Hou, J. A. and Y. H. Wang, "A compact quadrature hybrid based on high-pass and low-pass lumped elements," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 8, 595-597, Aug. 2007.
doi:10.1109/LMWC.2007.901775

16. Ohta, I., X. P. Li, T. Kawai, and Y. Kokubo, "A design of lumped-element 3 dB quadrature hybrids," Proc. Asia-Pacific Microw. Conf., Vol. 3, 1141-1144, Dec. 1997.

17. Chiang, Y. C. and C. Y. Chen, "Design of a wideband lumped-element 3-dB quadrature coupler," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 3, 476-479, 2001.
doi:10.1109/22.910551

18. Vogel, R. W., "Analysis and design of lumped and lumped distributed element directional couplers for MIC and MMIC applications," IEEE Trans. on Microw. Theory and Tech., Vol. 40, No. 2, 253-262, 1992.
doi:10.1109/22.120097

19. Hou, J. A. and Y. H. Wang, "Design of compact 90o and 180o couplers with harmonic suppression using lumped-element bandstop resonators," IEEE Trans. on Microw. Theory and Tech., Vol. 58, No. 11, 2932-2939, Nov. 2010.
doi:10.1109/TMTT.2010.2078950

20. Reed, J. and G. J. Wheeler, "A method of analysis of symmetrical four-port networks," IEEE Trans. on Microw. Theory and Tech., Vol. 4, No. 4, 246-252, Oct. 1956.
doi:10.1109/TMTT.1956.1125071

21. Pozar, D. M., Microwave Engineering, Artech House, Norwell, MA, 1990.

22. Faria, J. A., Multiconductor Transmission-line Structures, Wiley, New York, 1993.