Vol. 43
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-08-28
Optimization of a Quasi Loss Less Air-Cavity Inverted Microstrip Line from Microwave to Millimeter-Wave Frequencies and Comparison with the Coplanar Goubau Line at 60 GHz
By
Progress In Electromagnetics Research C, Vol. 43, 67-78, 2013
Abstract
An inverted micro-strip line (IML) is proposed at microwave and millimeter wave frequencies. This IML on high resistivity silicon (HRS) is studied from 10 to 100 GHz and presents an attenuation lower than 0.08 dB/mm on the whole frequency band. A parametric study, in order to minimize the attenuation and the dispersion of the inverted line in the 10-100 GHz bandwidth, is performed using numerical full wave calculations with HFSS (High Frequency Structural Simulator) tool. A complementary study is added: a large variety of characteristic impedances (for instance, from 38 Ω to 87 Ω at 60 GHz) is performed, the change of propagation modes is observed and the qualification and quantification of the losses allows minimizing them. A comparison with a line of the same length and width without ground plane, the Planar Goubau Line (PGL) is reported in the 10-100 GHz band and a first measure of the PGL is performed, in the 55-67 GHz band, presenting the same propagation mode as the IML at 60 GHz. The measured attenuation of 0.064 dB/mm in the 55-67 GHz obtained for the PGL promises a comparable value for the IML in the measured band.
Citation
Marjorie Grzeskowiak, Julien Emond, Stephane Protat, Gaelle Lissorgues, Frederique Deshours, Elodie Richalot, and Odile Picon, "Optimization of a Quasi Loss Less Air-Cavity Inverted Microstrip Line from Microwave to Millimeter-Wave Frequencies and Comparison with the Coplanar Goubau Line at 60 GHz ," Progress In Electromagnetics Research C, Vol. 43, 67-78, 2013.
doi:10.2528/PIERC13071707
References

1. Belot, D., "Millimeter-wave design in silicon technologies," Silicon Integrated Circuits in RF Systems, 232-238, 2010.

2. Prasad, M., A. S. Gaur, V. K. Sharma, and N. P. Pathak, "Dispersion and attenuation characteristics of suspended microstrip line on multilayer lossy silicon substrate at 60 GHz," International Conference on Infrared, Millimeter and THz Waves (2008), 1-2, 2008.
doi:10.1109/ICIMW.2008.4665716

3. Makita, T., I. Tamai, and S. Seki, "Coplanar waveguides on high-resistivity silicon substrates with attenuation constant lower than 1dB/mm for microwave and millimeter-wave bands," IEEE Trans. on Electron Devices, Vol. 58, No. 3, Mar. 2011.
doi:10.1109/TED.2010.2098878

4. Mat, D. A. A., R. K. Pokharel, R. Sapawi, H. Kanaya, and K. Yoshida, "Low-loss 60 GHz patterned ground shield CPW transmission line," IEEE TENCON, 1118-1121, 2011.

5. Pizarro, F., R. Pascaud, O. Pascal, T. Callegari, and L. Liard, "Experimental study of RF/microplasma interaction using an inverted microstrip line," European Conference on Antennas and Propagation, 1187-1190, 2013.

6. Pucci, E., A. U. Zaman, E. Rajo-Iglesias, and P-S. Kildal, "New loss loss inverted microstrip line using gap waveguide technology for slot antenna applications," European Conference on Antennas and Propagation, 979-982, 2011.

7. San, H., Y. Li, Z. Song, Y. Yu, and X. Chen, "Self-packaging fabrication of silicon-glass-based piezoresistive pressure sensor," IEEE Electron Devices Letters, Vol. 34, No. 6, 789-791, Jun. 2013.
doi:10.1109/LED.2013.2258320

8. Martoglio wideband 3D-transition between coplanar and inverted microstrip on silicon to characterize a line in MEMS technology, L., E. Richalot, G. Lissorgues, and O. Picon, "A ," Microwave and Optical Technology Letters, Vol. 46, No. 4, 378-381, Aug. 20, 2005.

9. Emond, J., M. Grzeskowiak, G. Lissorgues, S. Protat, F. Deshours, E. Richalot, and O. Picon, "A low planar Goubau line and a coplanar-PGL transition on high resistivity silicon substrate in the 57-64 GHz band," Microwave and Optical Technological Letters, Vol. 54, No. 1, 164-168, Jan. 2012.
doi:10.1002/mop.26470

10. Xu, Y. S. and R. G. Bosisio, "A study of planar Goubau lines (PGLS) for millimeter-and-submillimeter-wave integrated circuits (ICS)," Microwave and Optical Technological Letters, Vol. 43, No. 4, 290-293, Nov. 2004.
doi:10.1002/mop.20448

11. Laurette, S., A. Treizebre, and B. Bocquet, "Corrugated Goubau lines to slow down and confine THz waves," IEEE Transactions on Terahertz Science and Technology, Vol. 2, No. 3, May 2012.
doi:10.1109/TTHZ.2012.2189207

12. Treizebre, A., M. Hofman, and B. Bocquet, "Terahertz spiral planar Goubau line rejectors for biological characterization," Progress In Electromagnetics Research M, Vol. 14, 163-176, 2010.
doi:10.2528/PIERM10072110

13. Laurette, S., A. Treizebre, N.-E. Bourzgui, and B. Bocquet, "Terahertz interferometer Goubau-line waveguides," Progress In Electromagnetics Research Letters, Vol. 30, 49-58, 2012.
doi:10.2528/PIERL11121205

14. Xu, Y. S., C. Nerguizian, and R. G. Bosisio, "Wideband planar Goubau line integrated circuit components at millimeter waves," IET Microwave Antennas Propagation, Vol. 5, No. 8, 882-885, Jun. 2011.
doi:10.1049/iet-map.2010.0025

15. Treizebre, A., S. Laurette, Y. Xu, R. G. Bosisio, and B. Bocquet, "THz power divider circuits on planar Goubau lines (PGLs)," Progress In Electromagnetics Research C, Vol. 26, 219-228, 2012.
doi:10.2528/PIERC11112409

16. Karim, M. K., M. Sun, L. C. Ong, and Y. X. Guo, "SiP-based 60 GHz transmitter in LTCC," IEEE International Symposium on Radio-frequency Integration Technology (RFIT), 13-15, Nov. 2012.

17. Cao, Z., C. M. Okonkwo, H. P. A. van den Boom, B. Yang, S. Zou, M. Huang, E. Tangdiongga, and A. M. J. Koonen, "Simple and low cost remote-up conversion scheme using only one optical modulator and its application in a 60 GHz radio-over-fiber system," European Conference on Networks and Optical Communications (NOC), 1-4, 2012.