PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 48 > pp. 11-19

A TRADEOFF DESIGN OF BROADBAND POWER AMPLIFIER IN DOHERTY CONFIGURATION UTILIZING A NOVEL COUPLED-LINE COUPLER

By D. Ye, Y. Wu, and Y. Liu

Full Article PDF (294 KB)

Abstract:
A broadband power amplifier designed and implemented in Doherty configuration is illustrated in this paper. Both input and output networks adopt the broadband matching topology. Additionally a compensation network, consisting of a series transmission line shunted with a capacitance, is set behind the peak amplifier to avoid in-band power leakage in the low-power section while at the cost of peak output power in partial band. A novel coupler is designed as an uneven power-divided splitter and experimentally validated for a broadband power amplifier module. A tradeoff of bandwidth, efficiency and output power is fulfilled through parameters select and postproduction tuning. According to the measured results, the proposed broadband Doherty power amplifier achieves an average saturated output power of 42 dBm, an average gain of 10.6 dB, an average peak and 6 dB back-off efficiency of 48.4% and 32.8%, respectively, and a fractional bandwidth of 51.4%, from 1.3 GHz to 2.2 GHz. The adjacent channel power ratio is better than -40 dBc when the amplifier is driven with 10-MHz QPSK signal, thus exhibiting a high linearity performance.

Citation:
D. Ye, Y. Wu, and Y. Liu, "A tradeoff design of broadband power amplifier in doherty configuration utilizing a novel coupled-line coupler," Progress In Electromagnetics Research C, Vol. 48, 11-19, 2014.
doi:10.2528/PIERC14011702
http://www.jpier.org/pierc/pier.php?paper=14011702

References:
1. Doherty, W. H., "A new high efficiency power amplifier for modulated waves," Proceedings of the Institute of Radio Engineers, Vol. 24, No. 9, 1163-1182, Sep. 1936.

2. Jung, S., O. Hammi, and F. M. Ghannouchi, "Design optimization and DPD linearization of GaN-based unsymmetrical Doherty power amplifier for 3G multicarrier applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2105-2113, Sep. 2009.
doi:10.1109/TMTT.2009.2027076

3. Kam, S., O. Kwon, and Y. Jeong, "A wideband amplifier employing an envelope tracking technique," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 6, 312-314, Jun. 2013.
doi:10.1109/LMWC.2013.2257999

4. Chen, S. and Q. Xue, "Optimized load modulation network for Doherty power amplifier performance enhancement," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 11, 3474-3481, Nov. 2012.
doi:10.1109/TMTT.2012.2215625

5. Colantonio, P., F. Giannini, R. Giofrµe, and L. Piazzon, "Theory and experimental results of a class F AB-C Doherty power amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 1936-1947, Aug. 2009.
doi:10.1109/TMTT.2009.2025433

6. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Double the band and optimize," IEEE Microwave Magazine, Vol. 13, No. 2, 69-82, 2012.
doi:10.1109/MMM.2011.2181449

7. Rawat, K. and F. M. Ghannouchi, "Design methodology for dual-band Doherty power amplifier with performance enhancement using dual-band offset lines," IEEE Transactions on Industrial Electronics, Vol. 59, No. 12, 4831-4842, Dec. 2012.
doi:10.1109/TIE.2011.2176695

8. Saad, P., P. Colantonio, L. Piazzon, F. Giannini, K. Andersson, and C. Fager, "Design of a concurrent dual-band 1.8-2.4-GHz GaN-HEMT Doherty power amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1840-1849, Jun. 2012.
doi:10.1109/TMTT.2012.2189120

9. Bathich, K., A. Z. Markos, and G. Boeck, "A wideband GaN Doherty amplifier with 35% fractional bandwidth," Proceedings of the 40th European Microwave Conference, 1006-1009, Sep. 2010.

10. Wu, D. Y. and S. Boumaiza, "A modified Doherty configuration for broadband amplification using symmetrical devices," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3201-3213, Oct. 2012.
doi:10.1109/TMTT.2012.2209446

11. Gustafsson, D., J. C. Cahuanam, D. Kuylenstierna, I. Angelov, N. Rorsman, and C. Fager, "A wideband and compact GaN MMIC Doherty amplifier for microwave link applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 922-930, Feb. 2013.
doi:10.1109/TMTT.2012.2231421

12. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, G. Ghione, "3-3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, Jun. 2012.
doi:10.1109/TMTT.2012.2201745

13. Darraji, R., F. M. Ghannouchi, and M. Helaoui, "Mitigation of bandwidth limitation in wireless Doherty amplifiers with substantial bandwidth enhancement using digital techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 2875-2885, Sep. 2012.
doi:10.1109/TMTT.2012.2207910

14. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "A Doherty architecture with high feasibility and defined bandwidth behavior," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 9, 3308-3317, Sep. 2013.
doi:10.1109/TMTT.2013.2274432

15. Piazzon, L., R. Giofre, P. Colantonio, and F. Giannini, "A wideband Doherty architecture with 36% of fractional bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 11, 626-628, Nov. 2013.
doi:10.1109/LMWC.2013.2281413

16. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 1, 99-111, Jan. 2012.
doi:10.1109/TMTT.2011.2175237

17. Shao, J., R. Zhou, H. Ren, B. Arigong, M. Zhou, H. S. Kim, and H. Zhang, "Design of GaN Doherty power amplifiers for broadband applications," IEEE Microwave and Wireless Components Letters, Vol. PP, No. 99, 1, 2014.
doi:10.1109/LMWC.2013.2293659

18. Wu, Y., W. Sun, S. Leung, Y. Diao, K. Chan, and Y. Siu, "Single-layer microstrip high-directivity coupled-line coupler with tight coupling," IEEE Transactions on Microwave Theory and Technique, Vol. 61, No. 2, 746-753, Feb. 2013.
doi:10.1109/TMTT.2012.2235855

19. Horiguchi, K., S. Ishizaka, T. Okano, M. Nakayama, H. Ryoji, Y. Isota, and T. Takagi, "Efficiency enhancement of 250W Doherty power ampli¯ers using virtual open stub techniques for UHF-band OFDM applications," IEEE MTT-S International Microwave Symposium Digest, 1356-1359, 2006.

20. Markos, A. Z., "A 6W uneven Doherty power amplifier in GaN technology," European Conference on Wireless Technologies, 379-382, 2007.

21. Gajadharsing, J. R., "Analysis and design of a 200W LDMOS based Doherty amplifier for 3G base stations," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 529-532, 2004.


© Copyright 2010 EMW Publishing. All Rights Reserved