Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 49 > pp. 141-147


By W. Yuan, H. Zhang, and Y. Cheng

Full Article PDF (481 KB)

In this paper, an ultrathin asymmetric chiral metamaterial multi-band circular polarizer using combined twisted double-gap split-ring resonators (DGSRRs) is proposed and investigated. Experiment and numerical simulations are in good agreement, indicating that when a y-polarized wave is incident on this chiral metamaterial propagating along -z direction, the right circularly polarized (RCP) wave is emitted at 5.58 GHz and 9.34 GHz, while left circularly polarized (LCP) wave is excited at 6.41 GHz and 7.65 GHz, in addition to large polarization extinction ratio of more than 18 dB at the four resonant frequencies. The surface current distributions are studied to illustrate the transformation behavior for both circular polarizations.

W. Yuan, H. Zhang, and Y. Cheng, "Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators," Progress In Electromagnetics Research C, Vol. 49, 141-147, 2014.

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, 509, 1968.

2. helby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.

3. Cai, W. and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer Science + Business Media, LLC, 2010.

4. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 19, 1353-1355, 2004.

5. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407-6, 2009.

6. Wang, B., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," J. Opt. A: Pure Appl. Opt., Vol. 11, 114003-10, 2009.

7. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 177401-4, 2006.

8. Singh, R., E. Plum, W. L. Zhang, and N. I. Zheludev, "Highly tunable optical activity in planar achiral terahertz metamaterials," Opt. Express, Vol. 18, 13425-13430, 2010.

9. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, 1593-1595, 2010.

10. Song, K., X. P. Zhao, Q. H. Fu, Y. H. Liu, and W. R. Zhu, "Wide-angle 90o -polarization rotator using chiral metamaterial with negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1967-1976, 2012.

11. Kwon, D. H., P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Express, Vol. 16, 11802-11807, 2008.

12. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M.Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, 1513-1515, 2009.

13. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.

14. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Taunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.

15. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 221907-3, 2011.

16. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, No. 19, 195131, 2012.

17. Cheng, Y. Z., Y. Nie, X. Wang, and R. Z. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys., A Mater. Sci. Process., Vol. 111, No. 1, 209-215, 2013.

18. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, 1999.

19. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators," Opt. Lett., Vol. 36, No. 9, 1653-1655, 2011.

20. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Dual-band asymmetry chiral metamaterial based on planar spiral structure," Appl. Phys. Lett., Vol. 101, 161901-4, 2012.

21. Ma, X., C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.

22. Xie, L., H.-L. Yang, X. Huang, and Z. Li, "Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index," Progress In Electromagnetics Research, Vol. 141, 645-657, 2013.

23. Xu, H.-X., G.-M. Wang, M.-Q. Qi, T. Cai, and T. J. Cui, "Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial," Opt. Express, Vol. 210, No. 21, 24912-24921, 2013.

24. Yana, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.

25. Cheng, Y. Z., Y. Nie, C. Z. Cheng, X. Wang, and R. Z. Gong, "Asymmetric chiral metamaterial circular polarizer based on twisted split-ring resonator," Applied Physics B, doi.10.1007/s00340-013-5659-z, 2013, http://link.springer.com/article/10.1007%2Fs00340-013-5659-z.

26. Wu, L., Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, "Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials," Appl. Phys. Lett., Vol. 103, 021903, 2013.

27. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research,, Vol. 123, 337-354, 2012.

28. Hong, Q., T. Wu, X. Zhu, R. Lu, and S. T. Wu, "Designs of wide-view and broadband circular polarizers," Opt. Express, Vol. 13, 8318-8331, 2005.

29. Ge, Z., M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, "Wide-view and broadband circular polarizers for trans°ective liquid crystal displays," J. Display Technol., Vol. 4, 129-138, 2008.

30. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photon., Vol. 3, 157, 2009.

31. Liu, H., Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, "Coupled magnetic plasmons in metamaterials," Phys. Status Solidi B, Vol. 246, 1397, 2009.

© Copyright 2010 EMW Publishing. All Rights Reserved