PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 52 > pp. 71-82

DESIGN OF FRAGMENT-TYPE ISOLATION STRUCTURES FOR MIMO ANTENNAS

By L. Wang, G. Wang, and J. Siden

Full Article PDF (462 KB)

Abstract:
Fragment structure should find its application in acquiring high isolation between multiple-input multiple-output (MIMO) antennas. By gridding a design space into fragment cells, a fragment-type isolation structure can be constructed by metalizing some of the fragment cells. For MIMO isolation design, cells to be metalized can be selected by optimization searching scheme with objectives such as isolation, return losses, and even radiation patterns of MIMO antennas. Due to the exibility of fragment-type isolation structure, fragment-type structure has potentials to yield isolation higher than canonical isolation structures. In this paper, multi-objective evolutionary algorithm based on decomposition combined with genetic operators (MOEA/D-GO) is applied to design fragment-type isolation structures for MIMO patch antennas and MIMO PIFAs. It is demonstrated that isolation can be improved to different extents by using fragment-type isolation design. Some technique aspects related to the fragment-type isolation design, such as effects of fragment cell size, design space, density of metal cells, and efficiency consideration, are further discussed.

Citation:
L. Wang, G. Wang, and J. Siden, "Design of Fragment-Type Isolation Structures for MIMO Antennas," Progress In Electromagnetics Research C, Vol. 52, 71-82, 2014.
doi:10.2528/PIERC14051504

References:
1. Clerckx, B., C. Craeye, D. Vanhoenacker-Janvier, and C.Oestges, "Impact of antennas coupling on 2 x 2 MIMO communications," IEEE Trans. Veh. Technol., Vol. 56, No. 3, 1009-1018, May 2007.
doi:10.1109/TVT.2007.895545

2. Bialkowski, M. E., P. Uthansakul, K. Bialkowski, and S. Durrani, "Investigating the performance of MIMO systems from an electromagnetic perspective," Microw. Opt. Tech. Lett., Vol. 48, No. 7, 1233-1238, Jul. 2006.
doi:10.1002/mop.21664

3. Li, Z., Z. Du, M. Takahashi, K. Saito, and K. Ito, "Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 473-481, Feb. 2012.
doi:10.1109/TAP.2011.2173432

4. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Collocated microstrip antennas for MIMO systems with a low mutual coupling using mode confinement," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 589-592, Feb. 2010.
doi:10.1109/TAP.2009.2037690

5. Yang, F. and Y. Rahmat-Smaii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array application," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

6. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, Jun. 2007.
doi:10.1109/TAP.2007.898618

7. Ouyang, J., F. Yang, and Z. M. Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," EEE Antennas Wirel. Propag. Lett., Vol. 10, 310-313, 2011.
doi:10.1109/LAWP.2011.2140310

8. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

9. Saenz, E., I. Ederra, R. Gonzelo, S. Pivnenko, O. Breinbjerg, and P. de Maggt, "Coupling reduction between dipole antenna elements by using a planar meta-surface," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 383-394, Feb. 2009.
doi:10.1109/TAP.2008.2011249

10. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, Sep. 2010.
doi:10.1109/TAP.2010.2052560

11. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1031-1038, Apr. 2010.
doi:10.1109/TAP.2010.2041317

12. Gao, Y., X. Chen, Z. Ying, and C. Parini, "Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 3433-3441, Dec. 2007.
doi:10.1109/TAP.2007.910353

13. Dumanli, S., C. J. Railton, and D. L. Paul, "A slot antenna array with low mutual coupling for use on small mobile terminals," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1512-1520, May 2011.
doi:10.1109/TAP.2011.2123057

14. Zhang, S., B. K. Lau, Y. Tan, Z. Ying, and S. He, "Mutual coupling reduction of two PIFA with a T-shape slot impedance transformer for MIMO mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1521-1531, Mar. 2012.
doi:10.1109/TAP.2011.2180329

15. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electron. Lett., Vol. 36, 2057-2058, Dec. 2000.
doi:10.1049/el:20001452

16. Herscovici, N., M. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas Wirel. Propag. Lett., Vol. 1, 94-97, Jan. 2002.
doi:10.1109/LAWP.2002.805128

17. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A recon¯gurable aperture antenna based on switched links between electrically small metallic patches," EEE Trans. Antennas Propag., Vol. 52, 1434-1445, Jun. 2004.
doi:10.1109/TAP.2004.825648

18. Ethier, J., D. McNamara, M. Chaharmir, and J. Shaker, "Re┬░ectarray design using similarity-shaped fragmented sub-wavelength elements," Electron. Lett., Vol. 48, 900-902, 2012.
doi:10.1049/el.2012.1457

19. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Trans. Antennas Propag., Vol. 53, 1939-1945, Jun. 2005.
doi:10.1109/TAP.2005.848461

20. John, M. and M. Ammann, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 447-449, 2007.
doi:10.1109/LAWP.2007.891962

21. Ding, D. and G. Wang, "MOEA/D-GO for fragmented antenna design," Progress In Electromagnetics Research M, Vol. 33, 1-15, 2013.
doi:10.2528/PIERM13071610

22. Blanch, S., J. Romeu, and I. Corbell, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, May 2003.
doi:10.1049/el:20030495

23. Shin, H. and J. H. Lee, "Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole," IEEE Trans. Inform. Theory, Vol. 49, No. 10, 2636-2647, Oct. 2003.
doi:10.1109/TIT.2003.817439

24. Chae, S. H., S.-K. Oh, and S.-O. Park, "Analysis of mutual coupling correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 122-125, 2007.
doi:10.1109/LAWP.2007.893109


© Copyright 2010 EMW Publishing. All Rights Reserved