Vol. 52

Latest Volume
All Volumes
All Issues

Design of Fragment-Type Isolation Structures for MIMO Antennas

By Lu Wang, Gang Wang, and Johan Siden
Progress In Electromagnetics Research C, Vol. 52, 71-82, 2014


Fragment structure should find its application in acquiring high isolation between multiple-input multiple-output (MIMO) antennas. By gridding a design space into fragment cells, a fragment-type isolation structure can be constructed by metalizing some of the fragment cells. For MIMO isolation design, cells to be metalized can be selected by optimization searching scheme with objectives such as isolation, return losses, and even radiation patterns of MIMO antennas. Due to the exibility of fragment-type isolation structure, fragment-type structure has potentials to yield isolation higher than canonical isolation structures. In this paper, multi-objective evolutionary algorithm based on decomposition combined with genetic operators (MOEA/D-GO) is applied to design fragment-type isolation structures for MIMO patch antennas and MIMO PIFAs. It is demonstrated that isolation can be improved to different extents by using fragment-type isolation design. Some technique aspects related to the fragment-type isolation design, such as effects of fragment cell size, design space, density of metal cells, and efficiency consideration, are further discussed.


Lu Wang, Gang Wang, and Johan Siden, "Design of Fragment-Type Isolation Structures for MIMO Antennas," Progress In Electromagnetics Research C, Vol. 52, 71-82, 2014.


    1. Clerckx, B., C. Craeye, D. Vanhoenacker-Janvier, and C.Oestges, "Impact of antennas coupling on 2 x 2 MIMO communications," IEEE Trans. Veh. Technol., Vol. 56, No. 3, 1009-1018, May 2007.

    2. Bialkowski, M. E., P. Uthansakul, K. Bialkowski, and S. Durrani, "Investigating the performance of MIMO systems from an electromagnetic perspective," Microw. Opt. Tech. Lett., Vol. 48, No. 7, 1233-1238, Jul. 2006.

    3. Li, Z., Z. Du, M. Takahashi, K. Saito, and K. Ito, "Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 473-481, Feb. 2012.

    4. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Collocated microstrip antennas for MIMO systems with a low mutual coupling using mode confinement," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 589-592, Feb. 2010.

    5. Yang, F. and Y. Rahmat-Smaii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array application," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.

    6. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, Jun. 2007.

    7. Ouyang, J., F. Yang, and Z. M. Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," EEE Antennas Wirel. Propag. Lett., Vol. 10, 310-313, 2011.

    8. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 876-878, 2010.

    9. Saenz, E., I. Ederra, R. Gonzelo, S. Pivnenko, O. Breinbjerg, and P. de Maggt, "Coupling reduction between dipole antenna elements by using a planar meta-surface," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 383-394, Feb. 2009.

    10. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, Sep. 2010.

    11. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1031-1038, Apr. 2010.

    12. Gao, Y., X. Chen, Z. Ying, and C. Parini, "Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 3433-3441, Dec. 2007.

    13. Dumanli, S., C. J. Railton, and D. L. Paul, "A slot antenna array with low mutual coupling for use on small mobile terminals," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1512-1520, May 2011.

    14. Zhang, S., B. K. Lau, Y. Tan, Z. Ying, and S. He, "Mutual coupling reduction of two PIFA with a T-shape slot impedance transformer for MIMO mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1521-1531, Mar. 2012.

    15. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electron. Lett., Vol. 36, 2057-2058, Dec. 2000.

    16. Herscovici, N., M. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas Wirel. Propag. Lett., Vol. 1, 94-97, Jan. 2002.

    17. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A recon¯gurable aperture antenna based on switched links between electrically small metallic patches," EEE Trans. Antennas Propag., Vol. 52, 1434-1445, Jun. 2004.

    18. Ethier, J., D. McNamara, M. Chaharmir, and J. Shaker, "Re°ectarray design using similarity-shaped fragmented sub-wavelength elements," Electron. Lett., Vol. 48, 900-902, 2012.

    19. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Trans. Antennas Propag., Vol. 53, 1939-1945, Jun. 2005.

    20. John, M. and M. Ammann, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 447-449, 2007.

    21. Ding, D. and G. Wang, "MOEA/D-GO for fragmented antenna design," Progress In Electromagnetics Research M, Vol. 33, 1-15, 2013.

    22. Blanch, S., J. Romeu, and I. Corbell, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, May 2003.

    23. Shin, H. and J. H. Lee, "Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole," IEEE Trans. Inform. Theory, Vol. 49, No. 10, 2636-2647, Oct. 2003.

    24. Chae, S. H., S.-K. Oh, and S.-O. Park, "Analysis of mutual coupling correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 122-125, 2007.