PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 58 > pp. 61-68

VARYING THE OPERATION BANDWIDTH OF METAMATERIAL-INSPIRED FILTERING MODULES FOR HORN ANTENNAS

By M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano

Full Article PDF (1,070 KB)

Abstract:
Recently, we have presented a novel approach to design metamaterial-inspired notch filters that can be integrated within horn antennas of receiving systems to mitigate the effects of narrowband interfering signals. The filter module consists of a single Split Ring Resonator (SRR), whose rejection band needs to be matched to the bandwidth of the particular interfering signal we want to suppress. Extending our previous work, we show here how it is possible to control the bandwidth of such a filtering module by using different metamaterial-inspired resonators. In particular, we show that, while a reduction of the rejection band can be easily obtained by increasing the miniaturization rate of the resonator, the enlargement of the rejection band cannot be obtained in the same way by simply reducing the resonator quality factor. We show that a solution of the latter problem can be worked out by applying the ``critical coupling'' concept and considering the filtering module to be made of two equal SRRs with a proper optimal separation. The effectiveness of the approach is demonstrated trough proper full-wave simulations and experiments on a fabricated prototype. The proposed technique, used here to design a filtering module for a specific radiating system, has a more general relevance and can be applied to all cases where the operation bandwidth of a component is limited by the resonant nature of a single metamaterial-inspired particle.

Citation:
M. Barbuto, F. Trotta, F. Bilotti, and A. Toscano, "Varying the Operation Bandwidth of Metamaterial-Inspired Filtering Modules for Horn Antennas," Progress In Electromagnetics Research C, Vol. 58, 61-68, 2015.
doi:10.2528/PIERC15051402

References:
1. Tretyakov, S. A. and S. I. Maslovski, "Veselago materials: What is possible and impossible about the dispersion of the constitutive parameters," IEEE Antennas Propag. Mag., Vol. 49, No. 1, 37-43, Feb. 2007.
doi:10.1109/MAP.2007.370980

2. Lai, A., C. Christophe, and T. Itho, "Composite right/left-handed transmission line metamaterials," IEEE Microw. Mag., Vol. 5, 34-50, 2014.

3. Jin, P. and R.W. Ziolkowski, "Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1446-1459, May 2011.
doi:10.1109/TAP.2011.2123053

4. Dakhli, S., H. Rmili, K. Mahdjoubi, J.-M. Floc’h, and F. Choubani, "A family of directive metamaterial-inspired antennas," Progress In Electromagnetics Research, Vol. 49, 105-113, 2014.
doi:10.2528/PIERC14030503

5. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "A combined bandpass filter and polarization transformer for horn antennas," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1065-1068, 2013.
doi:10.1109/LAWP.2013.2280151

6. Barbuto, M., F. Bilotti, and A. Toscano, "Novel waveguide components based on complementary electrically small resonators," Photonic Nanostruct., Vol. 12, 284-290, 2014.
doi:10.1016/j.photonics.2014.03.005

7. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Horn antennas with integrated notch filters," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 781-785, 2015.
doi:10.1109/TAP.2014.2378269

8. Bilotti, F., L. Di Palma, D. Ramaccia, and A. Toscano, "Self-filtering low-noise horn antenna for satellite applications," IEEE Antennas Wireless Propag. Lett., Vol. 11, 354-357, 2012.
doi:10.1109/LAWP.2012.2191129

9. Ramaccia, D., L. Di Palma, G. Guarnieri, S. Scaf`e, A. Toscano, and F. Bilotti, "Balanced and unbalanced waveguide power splitters based on connected bi-Omega particles," Electronics Letters, Vol. 49, No. 24, 1504-1506, 2013.
doi:10.1049/el.2013.1565

10. Ramaccia, D., L. Di Palma, D. Ates, E. Ozbay, A. Toscano, and F. Bilotti, "Analytical model of connected bi-Omega: Robust particle for the selective power transmission through sub-wavelength apertures," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2093-2101, 2014.
doi:10.1109/TAP.2014.2301445

11. Tretyakov, S. A., "Meta-materials with wideband negative permittivity and permeability," Microw. Opt. Technol. Lett., Vol. 31, No. 3, 163-165, 2001.
doi:10.1002/mop.1387

12. Hrabar, S., I. Krois, and A. Kiricenko, "Towards active dispersionless ENZ meta-material for cloaking applications," Metamaterials, Vol. 4, 89-97, 2010.
doi:10.1016/j.metmat.2010.07.001

13. Barbuto, M., A. Monti, F. Bilotti, and A. Toscano, "Design of a non-foster actively loaded SRR and application in metamaterial-inspired components," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1219-1227, Mar. 2013.
doi:10.1109/TAP.2012.2228621

14. Meng, F. Y., Q. Wu, D. Erni, and L. W. Li, "Controllable metamaterial-loaded waveguides supporting backward and forward waves," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3400-3411, 2011.
doi:10.1109/TAP.2011.2161540

15. Scarborough, C. P., Q. Wu, D. H. Werner, E. Lier, R. K. Shaw, and B. G. Martin, "Demonstration of an octave-bandwidth negligible-loss metamaterial horn antenna for satellite applications," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1081-1088, 2013.
doi:10.1109/TAP.2012.2227660

16. Ma, X., C. Huang, W. Pan, B. Zhao, J. Cui, and X. Luo, "A dual circularly polarized horn antenna in Ku-band based on chiral metamateria," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2307-2311, 2014.
doi:10.1109/TAP.2014.2301841

17. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.
doi:10.2528/PIER14050204

18. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950

19. Barbuto, M., A. Alu, F. Bilotti, A. Toscano, and L. Vegni, "Characteristic impedance of a microstrip line with a dielectric overlay," COMPEL — The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 32, No. 6, 1855-1867, 2013.
doi:10.1108/COMPEL-10-2012-0283

20. CST Studio Suite 2014, CST Computer Simulation Technology AG, , Available at: www.cst.com.

21. Bowick, C., RF Circuit Design, 2nd Edition, Newnes, 2007.

22. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge and broadside coupled split ring resonators for metamaterial design. Theory and experiment," IEEE Trans. Antennas Propag., Vol. 51, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

23. Barbuto, M., F. Bilotti, and A. Toscano, "Design of a multifunctional SRR-loaded printed monopole antenna," Int. J. RF Microw. CAE, Vol. 22, 552-557, 2012.
doi:10.1002/mmce.20645

24. Aydin, K., A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, "Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture," Phys. Rev. Lett., Vol. 102, 013904, 2009.
doi:10.1103/PhysRevLett.102.013904


© Copyright 2010 EMW Publishing. All Rights Reserved