PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 58 > pp. 143-155

HYBRID BROADBAND 60-GHZ DOUBLE NEGATIVE METAMATERIAL HIGH GAIN ANTENNA

By T. Elkarkraoui, G. Y. Delisle, N. Hakem, and Y. Coulibaly

Full Article PDF (336 KB)

Abstract:
This paper proposes a double negative metamaterial surface as a superstrate for a multilayer cylindrical dielectric resonator antenna (MCDRA). The aim is to achieve a broadband and high gain Electromagnetic Band Gap (EBG) antenna that can be used in harsh propagation areas to satisfy all the requirements for the 60 GHz wireless communications offering a bandwidth of 7 GHz in the unlicensed ISM band (57−65 GHz), permitting to reach data rates of 10 Gbit/s and more. To meet these objectives various techniques are combined. Numerical and experimental results showed satisfactory performances with achievable impedance bandwidth of more than 10.5% (from 58.1 to 64.2 GHz) and a 18 dBi gain, an enhancement of 13 dBi compared to a homogenous DRA without metamaterial superstrate. The proposed antenna exhibits directive and stable radiation pattern in the entire operating band.

Citation:
T. Elkarkraoui, G. Y. Delisle, N. Hakem, and Y. Coulibaly, "Hybrid Broadband 60-GHz Double Negative Metamaterial High Gain Antenna," Progress In Electromagnetics Research C, Vol. 58, 143-155, 2015.
doi:10.2528/PIERC15052811

References:
1. Rappaport, T. S., J. Murdock, and F. Gutierre, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proceedings of the IEEE, Vol. 99, No. 8, 1390-1436, 2011.
doi:10.1109/JPROC.2011.2143650

2. Smulders, P. F. M., "60 GHz radio: Prospects and future directions," Proceedings of the IEEE Symposium Benelux Chapter on Communications and Vehicular Technology, 1-8, Eindhoven, Netherlands, 2003.

3. Petosa, A., A. Ittipiboon, Y. M. Antar, and D. Roscoe, "Recent advances in dielectric resonator antenna technology," IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, 35-48, Jun. 1998.
doi:10.1109/74.706069

4. Vettikalladi, H., O. Lafond, and M. Himdi, "High-efficient and high-gain superstrate antenna for 60-GHz indoor communication," IEEE Antennas Wireless Propagat. Lett., Vol. 8, 1422-1425, 2009.
doi:10.1109/LAWP.2010.2040570

5. Thvenot, C. and R. Jecko, "Directive photonic band gap antenna," IEEE Trans. on Microwaves Theory and Tech., Vol. 47, 2115-2122, Nov. 1999.

6. Denidni, T. A., Y. Coulibaly, and H. Boutayeb, "Hybrid dielectric resonator with circular musroom like stucture for gain improvement," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1043-1049, Apr. 2009.
doi:10.1109/TAP.2009.2015809

7. Elkarkraoui, T., G. Y. Delisle, N. Hakem, and Y. Coulibaly, "New hybrid design for a broadband high gain 60-GHz dielectric resonator antenna," 7th European Conference on Antennas and Propagation (EUCAP’2013), 2379-2382, Gothenburg, Sude, 2013.

8. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev., Vol. 70, No. 1, 016608.17, 2004.
doi:10.1103/PhysRevB.70.014501

9. Saenz, E., R. Gonzalo, I. Ederra, J. C. Vardaxoglou, and P. de Maagt, "Resonant meta-surface superstrate for single and multi-frequency dipole antenna arrays," IEEE Trans. Antennas Propag., Vol. 56, 951-960, 2008.
doi:10.1109/TAP.2008.919212

10. Esselle, K. P. and T. S. Bird, "A hybrid-resonator antenna: Experimental results," IEEE Trans. Antennas Propag., Vol. 53, 870-871, 2005.
doi:10.1109/TAP.2004.841325

11. Kishk, A., Y. Yin, and A. W. Glisson, "Conical dielectric resonator antennas for wide-band applications," IEEE Trans. Antennas Propag., Vol. 50, 469-474, 2002.
doi:10.1109/TAP.2002.1003382

12. Ge, Y., K. P. Esselle, and T. S. Bird, "A wide band probe-fed stacked dielectric resonator antenna," Microwave and Optical Technology Letters, Vol. 48, No. 8, 1630-1633, Aug. 8, 2006.
doi:10.1002/mop.21716

13. Huang, W. and A. A. Kishk, "Compact wideband multi-layer cylindrical dielectric resonator antennas," IET Microw. Antennas Propagation, Vol. 1, 998-1005, Oct. 2007.

14. Kaklamani, D. I., "Full-wave analysis of a Fabry-Parot type resonator," Progress In Electromagnetics Research, Vol. 24, 279-310, 1999.
doi:10.2528/PIER99042601

15. Walters, K. A. and G. W. Hanson, "Resonant frequency calculation for inhomogeneous dielectric resonators using volume integral equations and face-centered node points," Microwave and Optical Technology Letters, Vol. 32, No. 5, 356-359, 2002.
doi:10.1002/mop.10176

16. Mongia, R. K. and P. Bhartia, "Dielectric resonator antennas a review and general design relations for resonant frequency and bandwidth," International Journal of Microwave and Millimeter-wave Computer-aided Engineering, Vol. 4, No. 3, 230-247, Mar. 1994.
doi:10.1002/mmce.4570040304

17. Long, A., M. W. McAllister, and L. C. Shen, "The resonant cylindrical dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 31, No. 3, 406-412, May 1983.
doi:10.1109/TAP.1983.1143080

18. Glisson, A. W., D. Kajfez, and J. James, "Evaluation of modes in dielectric resonators using a surface integral equation formulation," IEEE Trans. on Microwaves Theory and Tech., Vol. 31, No. 12, 1023-1029, 1983.
doi:10.1109/TMTT.1983.1131656

19. Han, T. C., M. K. A. Rahim, T. Masri, and M. N. A. Karim, "Left handed metamaterial design for microstrip antenna application," Microwave Conference, Asia-Pacific Microwave Conference, 1-4, Bangkok, Thailand, 2007.

20. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

21. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

22. Szabo, S., G.-H. Park, R. Hedge, and E.-P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. on Microwaves Theory and Tech., Vol. 58, No. 10, 2646-2653, Oct. 2010.
doi:10.1109/TMTT.2010.2065310

23. Franson, S. J. and R. W. Ziolkowski, "Giga-bit per second data transfer in high-gain metamaterial structures at 60 GHz," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2913-2925, 2009.
doi:10.1109/TAP.2009.2029277

24. Vettikalladi, H., L. Le Coq, O. Lafond, and M. Himd, "High-effcient slot-coupled superstrate antenna for 60 GHz WLAN applications," Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), 1-5, 2010.

25. Coulibaly, Y., M. Nedil, I. Ben Mabrouk, L. Talbi, and T. A. Denidni, "High gain rectangular dielectric resonator for broadband millimeter-waves underground communications," Publication on Canadian Conference Electrical and Computer Engineering (CCECE), 1088-1091, 2011.

26. Hosseini, S. A., F. Capolino, and F. De Flaviis, "Design of a single-feed 60 GHz planar metallic Fabry-Perot cavity antenna with 20 dB gain," Proceedings of the IEEE International Workshop on Antenna Technology (iWAT’ 09), 1-4, Santa Monica, Calif, USA, Mar. 2009.


© Copyright 2010 EMW Publishing. All Rights Reserved