PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 59 > pp. 101-106

BANDPASS FILTERS WITH MIXED HAIRPIN AND PATCH RESONATORS

By E. A. Ogbodo, Y. Wang, and P. B. Rapajic

Full Article PDF (400 KB)

Abstract:
This paper presents a new implementation technique of transmission zeros in an in-line coupled filter. Neither cross couplings between non-adjacent resonators nor separate side-line resonators have been used. Instead a mixture of single-mode hairpin resonators and dual-mode patch resonators have been adopted in a bandpass filter with one asymmetric transmission zero. The introduction of the patch led to an improved frequency selectivity through an independently controllable transmission zero. This approach has been verified by a three-pole filter at 2.6 GHz with 8% bandwidth and a transmission zero at 2.4 GHz. Good agreement has been shown between the measurements and the simulation.

Citation:
E. A. Ogbodo, Y. Wang, and P. B. Rapajic, "Bandpass Filters with Mixed Hairpin and Patch Resonators," Progress In Electromagnetics Research C, Vol. 59, 101-106, 2015.
doi:10.2528/PIERC15072905

References:
1. Meng, M. and I. Hunter, "The design of parallel connected filter networks with non-uniform Q resonators," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 61, No. 1, 372-381, June 17-22, 2012.

2. Yusuf, Y. and X. Gong, "Compact low-loss integration of high-3-D filters with highly efficient antennas," IEEE Trans. Microw. Theo. Techn., Vol. 59, No. 4, 857-865, April 2011.
doi:10.1109/TMTT.2010.2100407

3. Mao, C. X., S. Gao, Z. P. Wang, Y. Wang, F. Qin, B. Sanz-Izquierdo, and Q. X. Chu, "Integrated filtering-antenna with controllable frequency bandwidth," 9th Europ. Conf. on Antennas and Propagation (EuCAP), April 12-17, 2015.

4. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2011.
doi:10.1002/9780470937297

5. Liao, C. and C. Chang, "Design of microstrip quadruplet filters with source-load coupling," IEEE Trans. Microwave Theory and Techniques, Vol. 53, No. 7, 2302-2308, July 2005.
doi:10.1109/TMTT.2005.850442

6. Rhodes, J. and R. Cameron, "General extracted pole synthesis technique with applications to low-loss TE011 mode filters," IEEE Trans. Microwave Theory and Techniques, Vol. 28, No. 9, 1018-1028, September 1980.
doi:10.1109/TMTT.1980.1130213

7. Macchiarella, G. and M. Politi, "Use of generalized coupling coefficients in the design of extracted-poles waveguide filters with non-resonating nodes," IEEE MTT-S Int. Microw. Symp. Dig., 1341-1344, June 2009.

8. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M. Mrozowski, "Zero-pole approach to computer aided design of in-line SIW filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.
doi:10.2528/PIER12061510

9. Yeo, K., M. Lancaster, and J. Hong, "The design of microstrip six-pole quasi-elliptic filter with linear phase response using extracted-pole technique," IEEE Trans. Microwave Theory and Technique, Vol. 40, No. 2, 321-327, 2001.
doi:10.1109/22.903092


© Copyright 2010 EMW Publishing. All Rights Reserved