Vol. 62
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-02-09
Performance Analysis of MIMO-Frequency Diverse Array Radar with Variable Logarithmic Offsets
By
Progress In Electromagnetics Research C, Vol. 62, 23-34, 2016
Abstract
Frequency diverse array (FDA) uses a small frequency increment at each antenna element to get a range, angle and time dependent beam pattern. Although linear frequency offset is used in most radar systems, nonlinear frequency offset is also very useful for analyzing FDA radar. A logarithmic frequency offsets based FDA (log-FDA) removes the inherent periodicity of FDA beam pattern to get a single maxima in area of interest. Multiple input multiple output frequency diverse array (MIMO-FDA) radar is also presented recently to provide some improvements compared to FDA radar. In this paper, a new hybrid scheme is proposed in which each subarray of MIMO-FDA uses a variable logarithmic offset. The resultant system, called MIMO-log-FDA, uses not only a different logarithmic offset, but also unique waveform in each subarray. Different logarithmic offsets contributed in terms of getting more control on width of beampattern, while the different waveforms provide diversity, which can be exploited at the receiver of the proposed system. Some improvements in transmit beam patterns have been shown for MIMO-log-FDA, followed by detailed signal model for better estimation of target at the receiving side. Performance analysis is also done in terms of signal to interference plus noise ratio (SINR) and Cramer-Rao lower bound (CRLB). Simulation and results verify the effectiveness of proposed scheme by comparing it with Log-FDA and MIMO-FDA radar.
Citation
Wasim Khan, Ijaz Mansoor Qureshi, Abdul Basit, Aqdas Naveed Malik, and Adnan Umar, "Performance Analysis of MIMO-Frequency Diverse Array Radar with Variable Logarithmic Offsets," Progress In Electromagnetics Research C, Vol. 62, 23-34, 2016.
doi:10.2528/PIERC16010902
References

1. Antonik, P., M. C. Wicks, H. D. Griffiths, and C. J. Baker, "Frequency diverse array radars," Proc. IEEE Radar Conf., Apr. 2006.

2. Antonik, P., M. C. Wicks, H. D. Griffiths, and C. J. Baker, "Multimission multi-mode waveform diversity," Proc. IEEE Radar Conf. Dig., 580-582, Verona, NY, USA, Apr. 24-27, 2006.

3. Secmen, M., S. Demir, A. Hizal, and T. Eker, "Frequency diverse array antenna with periodic time modulated pattern in range and angle," IEEE Conference on Radar, 427-430, 2007.

4. Antonik, P. and M. C. Wicks, "Method and apparatus for simultaneous synthetic aperture and moving target indication,", U.S. Patent 20 080 129 584, Jun. 5, 2008.

5. Wicks, M. C. and P. Antonik, "Frequency diverse array with independent modulation of frequency, amplitude, and phase,", U.S. patent 7,319,427, Jan. 15, 2008.

6. Baizert, P., T. B. Hale, M. A. Temple, and M. C. Wicks, "Forwardlooking radar GMTI benefits using a linear frequency diverse array," Electronics Letters, Vol. 42, No. 22, 1311-1312, Oct. 2006.
doi:10.1049/el:20062791

7. Huang, J., K. F. Tong, and C. J. Baker, "Frequency diverse array with beam scanning feature," Proc. IEEE 2008 Ant. and Prop. Soc. Intl. Symp., 1-4, Jul. 5-11, 2008.

8. Higgins, T. and S. Blunt, "Analysis of range-angle coupled beamforming with frequency diverse chirps," Proceedings of the 4th International Waveform Diversity & Design Conference, 140-144, Orlando, FL, Feb. 2009.

9. Wang, W. Q., H. Shao, and J. Cai, "Range-angle-dependent beamforming by frequency diverse array antenna," International Journal of Antennas and Propagation, 2012.

10. Zhuang, L. and X. Z. Liu, "Precisely beam steering for frequency diverse arrays based on frequency offset selection," Proc. Int. Radar Conf., 1-4, 2009.

11. Chen, Y.-G., Y.-T. Li, Y.-H. Wu, and H. Chen, "Research on the linear frequency diverse array performance," Proc. IEEE 10th Int. Conf. on Signal Processing, 2324-2327, Beijing, Oct. 24-28, 2010.

12. Shao, H., J. Li, H. Chen, and W. Q.Wang, "Adaptive frequency offset selection in frequency diverse array radar," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1405-1408, 2014.
doi:10.1109/LAWP.2014.2340893

13. Khan, W. and I. M. Qureshi, "Frequency diverse array radar with time-dependent frequency offset," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 758-761, 2014.
doi:10.1109/LAWP.2014.2315215

14. Wang, W.-Q., H. C. So, and H. Shao, "Nonuniform frequency diverse array for range-angle imaging of targets," IEEE Sensors Journal, Mar. 2014.

15. Khan, W., I. M. Qureshi, and S. Saeed, "Frequency diverse array radar with logarithmically increasing frequency offset," IEEE Antennas and Wireless Propagation Letters, Vol. 99, 1-5, 2015.

16. Sammartino, P. F., H. D. Griffiths, and C. J. Baker, "Frequency diverse MIMO techniques for radar," IEEE Trans. on Aerospace and Electronic Systems, Vol. 49, No. 1, 201-222, 2013.
doi:10.1109/TAES.2013.6404099

17. Wang, W.-Q. and H. C. So, "Transmit subaperturing for range and angle estimation in frequency diverse array radar," IEEE Trans. Signal Process., Vol. 62, No. 8, 2000-2011, 2014.
doi:10.1109/TSP.2014.2305638

18. Xu, J., G. Liao, S. Zhu, and H. C. So, "Deceptive jamming suppression with frequency diverse MIMO radar," Signal Processing, Vol. 113, 9-17, 2015.
doi:10.1016/j.sigpro.2015.01.014

19. Xu, J., G. Liao, S. Zhu, L. Huang, and H. C. So, "Joint range and angle estimation using MIMO radar with frequency diverse array," IEEE Trans. Signal Process., Vol. 63, No. 13, 3396-3410, 2015.
doi:10.1109/TSP.2015.2422680

20. Khan, W., I. Qureshi, A. Basit, and W. Khan, "Range bins based MIMO frequency diverse array radar with logarithmic frequency offset," IEEE Antennas and Wireless Propagation Letters, DOI 10.1109/LAWP.2015.2478964, 2015.

21. Van Trees, H. L., Optimum Array Processing, Wiley, New York, 2002.
doi:10.1002/0471221104

22. Renaux, A., P. Forster, E. Chaumette, and P. Larzabal, "On the high SNR conditional maximum-likelihood estimator full statistical characterization," IEEE Trans. Signal Process., Vol. 54, No. 12, 4840-4843, Dec. 2006.
doi:10.1109/TSP.2006.882072

23. Li, J., L. Xu, P. Stoica, K. W. Forsythe, and D. W. Bliss, "Range compression and waveform optimization for MIMO radar: A Cram´er-Rao bound based study," IEEE Trans. Signal Process., Vol. 56, No. 1, 218-232, Jan. 2008.
doi:10.1109/TSP.2007.901653

24. Xu, L., J. Li, and P. Stoica, "Target detection and parameter estimation for MIMO radar systems," IEEE Trans. Aerosp. Electron. Syst., Vol. 44, No. 3, 927-939, Jul. 2008.