PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 65 > pp. 139-151

NEW IMPLEMENTATION OF MM-WAVE HETERODYNE RECEIVER BASED ON SIX-PORT TECHNOLOGY: CIRCUIT CHARACTERIZATION AND HIGH DATA-RATE DEMODULATION RESULTS

By D. Hammou, M. Nedil, and S. O. Tatu

Full Article PDF (586 KB)

Abstract:
This paper presents a new implementation of a millimeter wave heterodyne receiver based on six-port technology. The six-port circuit is designed using three hybrid couplers H-90º and a new ring power divider. For the characterization of the circuit, several six-port two-port measurement configurations were designed and fabricated on the same wafer along with calibration standards. The new six-port architecture evaluation based on qi points location demonstrates wideband performances and high coupled-port phase and amplitude balance in the 57-65 GHz frequency band. The six-port model based on S-parameter measurements is then implemented in ADS software, for realistic advanced simulation systems of a short-range 60 GHz wireless link. The millimeter wave frequency conversion is performed using a six-port down-converter. The second frequency conversion uses conventional means due to the low IF frequency value. The demodulation results of a V-band QPSK signal for high data rate from 100 to 1000 MBits/s are presented and discussed. The results of the Bit Error Rate (BER) analysis demonstrate that the proposed architecture can be successfully used for high speed wireless link transmission at 60 GHz.

Citation:
D. Hammou, M. Nedil, and S. O. Tatu, "New Implementation of MM-Wave Heterodyne Receiver Based on Six-Port Technology: Circuit Characterization and High Data-Rate Demodulation Results," Progress In Electromagnetics Research C, Vol. 65, 139-151, 2016.
doi:10.2528/PIERC16012808

References:
1., , Federal Communication Commission, Amendment of Parts 2, 15 and 97 of the Commission’s Rules to Permit Use of Radio Frequency above 40 GHz for New Radio Applications, FCC 95-499, ET Docket No. 94–124, RM-8308, Dec. 15, 1995.
doi:10.1109/35.978061

2. Smulders, P., "Exploiting the 60GHz band for local wireless multimedia access: Prospects and future directions," IEEE Communications Magazine, No. 1, 140-147, Jan. 2002.
doi:10.2528/PIERB12012303

3. Anang, K. A., P. B. Rapajic, L. Bello, and R. Wu, "Sensitivity of cellular wireless network performance to system & propagation parameters at carrier frequencies greater than 2GHz," Progress In Electromagnetics Research B, Vol. 40, 31-54, 2012.
doi:10.1109/JPROC.2011.2143650

4. Rappaport, B. T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proceedings of the IEEE, Vol. 99, No. 8, 1390-1436, 2011.

5. Cohn, S. B. and N. P. Weinhouse, "An automatic microwave phase measurement system," Microwave Journal, Vol. 7, No. 2, 49-56, 1964.
doi:10.1109/TIM.1972.4314069

6. Engen, G. F. and C. A. Hoer, "Application of an arbitrary 6-port junction to power-measurement problems," IEEE Transactions on Instrumentation and Measurement, 470-474, 1972.
doi:10.1109/TMTT.1977.1129278

7. Engen, G. F., "An improved circuit for implementing the six-port technique of microwave measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 25, No. 12, 1080-1083, 1977.
doi:10.1109/TIM.1972.4314068

8. Hoer, C. A., "The six-port coupler: A new approach to measuring voltage, current, power, impedance, and phase," IEEE Transactions on Instrumentation and Measurement, Vol. 21, No. 4, 466-470, 1972.
doi:10.1109/TMTT.1977.1129277

9. Engen, G. F., "The six-port reflectometer an alternative network analyzer," IEEE Transactions on Microwave Theory Techniques, Vol. 25, 1075-1077, 1977.

10. Li, J., K. Wu, and R. G. Bosisio, "A Collision avoidance radar using six-port phase/frequency discriminator (SPFD)," Proceedings of IEEE Microwave Theory and Techniques Symposium, 1553-1556, 1994.
doi:10.1109/22.475633

11. Li, J., R. G. Bosisio, and K. Wu, "“Computer and measurement simulation of a new digital receiver operating directly at millimeter-wave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 12, 2766-2772, Dec. 1995.
doi:10.1109/22.481390

12. Li, J., R. G. Bosisio, and K. Wu, "Dual-ton calibration of six-port junction and its application to the six-port direct digital millimetric receiver," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 1, 93-99, 1996.
doi:10.1109/22.971644

13. Tatu, S. O., E. Moldovan, K. Wu, and R. G. Bosisio, "A new direct millimeter-wave six-port receiver," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 12, 2517-2522, Dec. 2001.
doi:10.1109/TMTT.2002.804646

14. Tatu, S. O., E. Moldovan, G. Brehm, K. Wu, and R. G. Bosisio, "ka band direct digital receiver," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 11, 2436-2442, Nov. 2002.
doi:10.2528/PIER11030407

15. De la Morena-Alvarez-Palencia, C., M. Burgos-Garcia, and J. Gismero-Menoyo, "Four-octave sixport receiver and its calibration for broadband communications and software defined radios," Progress In Electromagnetics Research, Vol. 116, 1-21, 2011.
doi:10.2528/PIERB12061210

16. De la Morena-Alvarez-Palencia, C. and M. Burgos-Garcia, "Experimental performance comparison of six-port and conventional zero-IF/low-IF receivers for software defined radio," Progress In Electromagnetics Research B, Vol. 42, 311-333, 2012.
doi:10.1109/TMTT.2005.854181

17. Tatu, S. O., E. Moldovan, K. Wu, R. G. Bosisio, and T. Denidni, "Ka-band analog front-end for software defined direct conversion receiver," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2768-2776, Sept. 2005.
doi:10.2528/PIERB12052508

18. Sarrazin, T., H. Vettikalladi, O. Lafond, M. Himdi, and N. Rolland, "Low cost 60 GHz new thin Pyralux membrane antennas fed by substrate integrated waveguide," Progress In Electromagnetics Research B, Vol. 42, 207-224, 2012.
doi:10.2528/PIERL10111706

19. Huang, T. Y. and T. J. Yen, "A high-ratio bandwidth square-wave-like bandpass filter by two-handed metamaterials and its application in 60GHz wireless communication," Progress In Electromagnetics Research Letters, Vol. 21, 19-29, 2011.

20. Hannachi, C., D. Hammou, T. Djerafi, Z. Ouardirhi, and S. O. Tatu, "Complete characterization of novel MHMICs for V-band communication systems," Journal of Electrical and Computer Engineering, 1-8, Nov. 2013.
doi:10.1002/mop.25377

21. Hammou, D., E. Moldovan, K. Wu, and S. O. Tatu, "60 GHz MHMIC six-port model analysis," Microwave and Optical Technology Letters, Vol. 52, No. 9, Sept. 2010.

22. Williams, D. F., J. M. Belquin, G. Dambrine, and R. Fenton, "On-wafer measurement at millimeter wave frequencies," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1683-1686, San Francisco, CA, Jun. 17–21, 1996.
doi:10.1109/22.85388

23. Marks, R. B., "A multiline method of network analyzer calibration," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, 1205-1215, 1991.

24. Antsos, D., R. Crist, and L. Sukamto, "A novel Wilkinson power divider with predictable performance at K and Ka-band," IEEE MTT-S International Microwave Symposium Digest, 907-910, Jun. 1994.
doi:10.2528/PIERL10061805

25. Peters, F. D. L., D. Hammou, S. O. Tatu, and T. A. Denidni, "Modified millimeter-wave Wilkinson power divider for antenna feeding network," Progress In Electromagnetics Research Letters, Vol. 17, 11-18, 2010.

26. Hammou, D., E. Moldovan, and S. O. Tatu, "Novel ring millimeter wave power divider/combiner," IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 2011), Conference Proceedings, 280-283, Niagara Falls, Ontario, May 8–11, 2011.
doi:10.1109/TIM.2015.2494631

27. Hammou, D., T. Djerafi, M. Nedil, and S. O. Tatu, "Considerations for on-Wafer millimeter wave measurements on thin ceramic substrate," IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 2, 441-447, Nov. 2015.
doi:10.1049/iet-map.2013.0093

28. Xu, Y. and R. G. Bosisio, "Wideband planar Goubau line (PGL) couplers and six-port circuits compatible with short range (60GHz) radio," IET Microwaves, Antennas & Propagation, Vol. 7, No. 12, 985-990, 2013.
doi:10.1109/IranianCEE.2014.6999753

29. Talebzadeh, A. and A. Abdipour, "Miniaturized six-port receiver for 60 GHz communication," IEEE 2014 22nd Iranian Conference on. Electrical Engineering (ICEE), 1406-1410, 2014.

30. Zhang, J. and V. Fusco, "SiGe V-band 6-port receiver," IET Seminar Millimeter Wave Technologies for Gigabit per Second Wireless Communications, 51-60, Belfast, Sept. 2012.
doi:10.2528/PIER09052610

31. Boukari, B., E. Moldovan, S. Affes, K. Wu, R. G. Bosisio, and S. O. Tatu, "A heterodyne sixport FMCW radar sensor architecture based on beat signal phase slope techniques," Progress In Electromagnetics Research, Vol. 93, 307-322, 2009.

32. Tatu, S. O. and E. Moldovan, "V-band multiport heterodyne receiver for high-speed communication systems," EURASIP Journal on Wireless Communications and Networking, Vol. 2007, No. 1, 45, 2007.

33. Hammou, D., N. Khaddaj Mallat, E. Moldovan, S. Affes, K. Wu, and S. O. Tatu, "V-band sixport down-conversion techniques," International Symposium on Signals, Systems, and Electronics (ISSSE), conference CD, IEEE catalog Number 07EX1869C, 379-382, Montreal, Canada, 2007.

34. Texas Instruments, Inc., "THS4304-SP wideband operational amplifier (Rev. A)," Data Sheet, Jul. 2004.

35. Pozar, D. M., Microwave and RF Design of Wireless Systems, John Wiley and Sons, New York, 2001.

36. McKinley, M. D., K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, "EVM calculation for broadband modulate signals," NIST PML, Tech. Rep., Gaithersburg, MD, 2005.


© Copyright 2010 EMW Publishing. All Rights Reserved