Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 63 > pp. 173-182


By G. Bartolucci, G. De Angelis, A. Lucibello, R. Marcelli, and E. Proietti

Full Article PDF (328 KB)

In this paper a new method to solve the microwave matching problem of MEMS shunt connected switches is proposed, as an extension of a previously presented approach based on the image parameter formulation. The image phase concept is used to impose the matching condition in the ``on'' state of the device, which is the most critical one. Two different configurations are investigated: a single basic cell and double basic cell topologies. For both of them an analytic modeling procedure is developed, and the equations for the synthesis of the structures are derived. In order to provide some examples, the method has been applied to a previously realized MEMS shunt variable capacitor.

G. Bartolucci, G. De Angelis, A. Lucibello, R. Marcelli, and E. Proietti, "The Image Phase Approach for the Design of RF MEMS Shunt Switches," Progress In Electromagnetics Research C, Vol. 63, 173-182, 2016.

1. Muldavin, J. B. and G. M. Rebeiz, "High-isolation CPW MEMS shunt switches — Part 1: Modeling," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 6, 1045-1052, Jun. 2000.

2. Muldavin, J. B. and G. M. Rebeiz, "High-isolation CPW MEMS shunt switches — Part 2: Design," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 6, 1053-1056, Jun. 2000.

3. Rizk, J., G. L. Tan, J. B. Muldavin, and G. M. Rebeiz, "High-isolation W-band MEMS switches," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 10-12, Jan. 2001.

4. Rebeiz, G. M., RF MEMS: Theory, Design, and Technology, John Wiley & Sons, Hoboken, New Jersey, USA, 2003.

5. Zheng, W. B., Q. A. Huang, X. P. Liao, and F. X. Li, "RF MEMS membrane switches on GaAs substrates for X-band applications," Journal of Microelectromechanical Systems, Vol. 14, No. 3, 464-471, Jun. 2005.

6. Shen, Q. and N. Scott Barker, "Distributed MEMS tunable matching network using minimalcontact RF-MEMS varactors," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2646-2658, Jun. 2006.

7. Domingue, F., S. Fouladi, A. B. Kouki, and R. R. Mansour, "Design methodology and optimization of distributed MEMS matching networks for low-microwave-frequency applications," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 3030-3041, Dec. 2009.

8. Bartolucci, G., G. de Angelis, A. Lucibello, R. Marcelli, and E. Proietti, "Analytic modeling of RF MEMS shunt connected capacitive switches," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8–9, 1168-1179, 2012.

9. Bartolucci, G., "Image parameter modeling of analog traveling-wave phase shifters," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 10, 1505-1509, Oct. 2002.

10. Bartolucci, G., S. Catoni, F. Giacomozzi, R. Marcelli, B. Margesin, and D. Pochesci, "Realisation of distributed RF MEMS phase shifter with very low number of switches," Electronics Letters, Vol. 43, No. 23, 1290-1292, Nov. 2007.

11. Bartolucci, G., F. Giannini, and L. Scucchia, "Design considerations for the gate circuit in distributed amplifiers," IET Circuits, Devices and Systems, Vol. 4, No. 3, 181-187, May 2010.

12. Pozar, D. M., Microwave Engineering, 2 Ed., Wiley, New York, 1998.

13. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House, Norwood, MA, United State of America, 1980.

14. Puyal, V., D. Dragomirescu, C. Villeneuve, J. Ruan, P. Pons, and R. Plana, "Frequency scalable model for MEMS capacitive shunt switches at millimeter-wave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 11, 2824-2833, Nov. 2009.

15. Bartolucci, G., R. Marcelli, S. Catoni, F. Giacomozzi, B.Margesin, V. Mulloni, and P. Farinelli, "An equivalent-circuit model for shunt-connected coplanar microelectromechanical — System switches for high frequency applications," Journal of Applied Physics, Vol. 104, 845141-845148, Oct. 2008.

16. Vaha-Heikkila, T., K. van Caekenberghe, J. Varis, J. Tuovinen, and G. M. Rebeiz, "RF MEMS impedance tuners for 6–24 GHz applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 17, No. 3, 265-278, May 2007.

17. Halder, S., C. Palego, Z. Peng, J. C. M. Hwang, D. I. Forehand, and C. L. Goldsmith, "Compact RF model for transient characteristics of MEMS capacitive switches," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 1, 237-242, Jan. 2009.

18. Marcelli, R., G. Bartolucci, G. Minucci, B. Margesin, F. Giacomozzi, and F. Vitulli, "Lumped element modelling of coplanar series RF MEMS switches," Electronics Letters, Vol. 40, No. 20, 1272-1274, Sep. 2004.

19. Peroulis, D., S. P. Pacheco, and L. P. B. Katehi, "RF MEMS switches with enhanced powerhandling capabilities," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 59-68, Jan. 2004.

20. Lucibello, A., E. Proietti, F. Giacomozzi, R. Marcelli, G. Bartolucci, and G. de Angelis, "RF MEMS switches fabrication by using SU-8 technology,” Microsystem Technologies," Microsystem Technologies, Vol. 19, No. 6, 929-936, Jun. 2013.

21. Goyal, R., Monolithic Microwave Integrated Circuits: Technology and Design, Artech House, Norwood, MA, United State of America, 1989.

22. Simons, R., Coplanar Waveguide Circuits, Components, and Systems, Wiley, New York, 2001.

© Copyright 2010 EMW Publishing. All Rights Reserved