Vol. 63
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-04-25
Device-Free Electromagnetic Passive Localization Using Link Line Information in Wireless Sensor Networks
By
Progress In Electromagnetics Research C, Vol. 63, 95-103, 2016
Abstract
The electromagnetic passive localization without the need of carrying any device, named device-free passive localization (DFPL) technique, is an emerging technology for determining an uncooperative target's position. The DFPL technique detects the shadowed links in a monitored area and realizes localization with the received signal strength (RSS) measurements of these links. However, most current RSS-based DFPL schemes belong to the model-based DFPL method, since the localization accuracy depends on the shadowing model. Moreover, model-based DFPL methods require high memory and computing resources for accurate tracking performance, and thus may not be suitable for resource-constrained applications. To overcome these problems, in this paper we propose a lightweight DFPL method which makes use of recent link lines detected by wireless sensor networks to estimate the target's location. This method can be independent of the shadowing model and can also reduce the algorithm's storage and computational resource requirements. The effectiveness and robustness of the proposed scheme are demonstrated by experimental results where the proposed algorithm yields substantial improvement for localization performance and complexity.
Citation
Li Li, Wei Ke, Xiunan Zhang, Yanan Yuan, and Jianhua Shao, "Device-Free Electromagnetic Passive Localization Using Link Line Information in Wireless Sensor Networks," Progress In Electromagnetics Research C, Vol. 63, 95-103, 2016.
doi:10.2528/PIERC16020404
References

1. Mitilineos, S. A. and S. C. A. Thomopoulos, "Positioning accuracy enhancement using error modeling via a polynomial approximation approach," Progress In Electromagnetics Research, Vol. 102, 49-64, 2010.
doi:10.2528/PIER10010102

2. Mitilineos, S. A., D. M. Kyriazanos, O. E, and Segou, "Indoor localization with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.
doi:10.2528/PIER10062801

3. Patwari, N. and J. Wilson, "RF sensor networks for device-free localization: measurements, models, and algorithms," Proc. of the IEEE, Vol. 98, No. 11, 1961-1973, 2010.
doi:10.1109/JPROC.2010.2052010

4. Youssef, M., M. Mah, and A. Agrawala, "Challenges: device-free passive localization for wireless environments," 13th ACM MobiCom, 222-229, 2007.

5. Sabek, I., M. Youssef, and A. V. Vasilakos, "ACE: An accurate and e±cient multi-entity device-Free WLAN localization system," IEEE Trans. Mobile Comput., Vol. 14, No. 2, 261-273, 2015.
doi:10.1109/TMC.2014.2320265

6. Wilson, J. and N. Patwari, "Radio tomographic imaging with wireless networks," IEEE Transactions on Mobile Computing, Vol. 9, No. 5, 621-632, 2010.
doi:10.1109/TMC.2009.174

7. Kaltiokallio, O., M. Bocca, and N. Patwari, "A fade level-based spatial model for radio tomographic imaging," IEEE Trans. Mobile Comput., Vol. 13, No. 5, 1159-1172, 2014.

8. Kanso, M. A. and M. G. Rabbat, "Compressed RF tomography for wireless sensor networks: centralized and decentralized approaches," Proc. 5th DCOSS, 173-186, 2009.

9. Yang, Z. Y., K. D. Huang, X. M. Guo, and G. L. Wang, "A real-time device-free localization system using correlated RSS measurements," EURASIP J. Wireless Commu. Netw., Vol. 2013, No. 186, 1-12, 2013.

10. Wang, J., Q. Gao, X. Zhang, and H. Wang, "Device-free localization with wireless networks based on compressing sensing," IET Commun., Vol. 6, No. 15, 2395-2403, 2012.
doi:10.1049/iet-com.2011.0603

11. Ke, W., G. Liu, and T. Fu, "Robust sparsity-based device-free passive localization in wireless networks," Progress In Electromagnetics Research C, Vol. 46, 63-73, 2014.
doi:10.2528/PIERC13101301

12. Hamilton, B. R., X. L. Ma, R. J. Baxley, and S. M. Matechik, "Propagation modeling for radio frequency tomography in wireless networks," IEEE J. Sel. Topics Signal Process, Vol. 8, No. 1, 43-54, 2014.
doi:10.1109/JSTSP.2013.2287471

13. Zhang, D., J. Ma, Q. Chen, and L. M. Ni, "An RF-based system for tracking transceiver-free objects," Proc. 5th PerCom, 135-144, 2007.

14. Zhang, D., K. Lu, R. Mao, Y. Feng, Y. Liu, Z. Ming, and L. Ni, "Fine-grained localization for multiple transceiver-free objects by using RF-based technologies," IEEE Trans. Parallel Distrib. Syst., Vol. 25, No. 6, 1464-1475, 2014.
doi:10.1109/TPDS.2013.243

15. Hillyard, P., S. Daruki, N. Patwari, and S. Venkatasubramanian, "Tracking estimation using link line crossing information in wireless netowrks," Proc. GlobalSIP 2013, 1037-1040, 2013.

16. Zhao, Y. and N. Patwari, "Demo abstract: Histogram distance-based radio tomographic localization," Proc. 11th ACM/IEEE Int. Conf. IPSN, 129-130, 2012.

17. Kaltiokallio, O., M. Bocca, and N. Patwari, "Enhancing the accuracy of radio tomographic imaging using channel diversity," Proc. 9th IEEE Int. Conf. MASS, 254-262, 2012.