PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 65 > pp. 175-182

RESHAPING ELECTROMAGNETIC EMISSIONS WITH META-SUBSTRATE BASED ON SPOOF PLASMONS

By Y. Gao, A. Maurel, and A. Ourir

Full Article PDF (624 KB)

Abstract:
We investigate the efficiency of a metasurface supporting spoof plasmons to control the electro-magnetic emission of a radiating element. The three-dimensional metasurface is made of an array of metallic grounded rods, and it is used as the substrate of a printed antenna. Such a substrate provides a transmission band at low frequencies, corresponding to spoof plasmon propagation, and a total electromagnetic band gap above the cut-off frequency. We show how an efficient and directive emission with low side-lobe levels and backward radiation can be obtained when the operating frequency of the antenna is considered in the band gap. The role of the spoof plasmons is further demonstrated by tuning the transmission band at the operating frequency. The proposed meta-substrate is an original and efficient alternative to reshape the emission of electromagnetic sources.

Citation:
Y. Gao, A. Maurel, and A. Ourir, "Reshaping Electromagnetic Emissions with Meta-Substrate Based on Spoof Plasmons," Progress In Electromagnetics Research C, Vol. 65, 175-182, 2016.
doi:10.2528/PIERC16030203

References:
1. Gonzalo, R., P. de Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2131-2138, Nov. 1999.
doi:10.1109/22.798009

2. Sievenpiper, D., L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

3. Kesler, M. P., J. G. Maloney, B. L. Shirley, and G. S. Smith, "Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors," Microwave and Optical Technology Letters, Vol. 11, No. 4, 169-174, 1996.
doi:10.1002/(SICI)1098-2760(199603)11:4<169::AID-MOP1>3.0.CO;2-I

4. Ying, Z., P. S. Kildal, and A. A. Kishk, "Study of different realizations and calculation models for soft surfaces by using a vertical monopole on a soft disk as a test bed," IEEE Transactions on Antennas and Propagation, Vol. 44, 1474-1481, Nov. 1996.

5. Yi, H., S. W. Qu, and X. Bai, "Antenna array excited by spoof planar plasmonic waveguide," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1227-1230, 2014.

6. Bai, X., S.-W. Qu, and H. Yi, "Applications of spoof planar plasmonic waveguide to frequencyscanning circularly polarized patch array," Journal of Physics D: Applied Physics, Vol. 47, No. 32, 325101, 2014.
doi:10.1088/0022-3727/47/32/325101

7. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

8. Kelders, L., J. F. Allard, and W. Lauriks, "Ultrasonic surface waves above rectangular-groove gratings," Acoustical Society of America Journal, Vol. 103, 2730-2733, May 1998.
doi:10.1121/1.422793

9. Pendry, J. B., L. Martn-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.
doi:10.1126/science.1098999

10. Garcia-Vidal, F. J., L. Martn-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 2, S97, 2005.
doi:10.1088/1464-4258/7/2/013

11. Maurel, A., S. Flix, J.-F. Mercier, and A. Ourir, "Effective birefringence to analyze sound transmission through a layer with subwavelength slits," Comptes Rendus Mcanique, Vol. 343, No. 12, 612-621, 2015 (Acoustic metamaterials and phononic crystals).
doi:10.1016/j.crme.2015.07.006

12. Mercier, J.-F., M. L. Cordero, S. Felix, A. Ourir, and A. Maurel, "Classical homogenization to analyse the dispersion relations of spoof plasmons with geometrical and compositional effects," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 471, No. 2182, 2015.

13. Shen, X., T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, "Conformal surface plasmons propagating on ultrathin and flexible films," Proceedings of the National Academy of Sciences, Vol. 110, No. 1, 40-45, 2013.
doi:10.1073/pnas.1210417110

14. Martin-Cano, D., M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, "Domino plasmons for subwavelengthterahertz circuitry," Opt. Express, Vol. 18, 754-764, Jan. 2010.
doi:10.1364/OE.18.000754

15. Lemoult, F., G. Lerosey, J. de Rosny, and M. Fink, "Resonant metalenses for breaking the diffraction barrier," Phys. Rev. Lett., Vol. 104, 203901, May 2010.
doi:10.1103/PhysRevLett.104.203901

16. Ourir, A., G. Lerosey, F. Lemoult, M. Fink, and J. de Rosny, "Far field subwavelength imaging of magnetic patterns," Applied Physics Letters, Vol. 101, No. 11, 111102, 2012.
doi:10.1063/1.4748974

17. Jouveaud, C., A. Ourir, and J. Rosny, "Surface waves radiation by finite arrays of magnetoelectric resonators," Progress In Electromagnetics Research, Vol. 132, 177-198, 2012.
doi:10.2528/PIER12071009

18. Mercier, J.-F., M. L. Cordero, S. F´elix, A. Ourir, and A. Maurel, "Classical homogenization to analyse the dispersion relations of spoof plasmons with geometrical and compositional effects," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 471, No. 2182, 2015.

19. Cordero, M. L., A. Maurel, J.-F. Mercier, S. Flix, and F. Barra, "Tuning the wavelength of spoof plasmons by adjusting the impedance contrast in an array of penetrable inclusions," Applied Physics Letters, Vol. 107, No. 8, 2015.
doi:10.1063/1.4929497


© Copyright 2010 EMW Publishing. All Rights Reserved