PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 66 > pp. 39-46

HIGH EFFICIENCY AND HIGH POWER STAGGERED DOUBLE VANE TWT AMPLIFIER ENHANCED BY VELOCITY-TAPER DESIGN

By X. Shi, L. R. Billa, Y.-B. Gong, M. N. Akram, and X. Chen

Full Article PDF (674 KB)

Abstract:
Previously reported staggered double vane (SDV) slow wave structure (SWS) traveling wave tube (TWT) gave electron efficiency as low as 3.4% at 220 GHz, which needs to be improved. One easy method to improve the electron efficiency and the output power is to reuse the spent electron beam energy, by resynchronizing electron velocity to the phase velocity of the terahertz (THz) signal at the second section of the TWT. In this article, we have modified the pitch of the SWS to realize the tapered phase velocity, which is for the first time to our knowledge applied to the SDV SWS at 220 GHz. By varying the geometry configuration, an optimized structure of tapered pitch SWS has been successfully developed. The results reported in this paper show a significant improvement of the output power, gain and electron efficiency. At 220 GHz, the output power has increased by about 65% with respect to the previous reported value reaching 111 W, and the electron efficiency has improved from 3.4% to 5.6%. In order to simplify the microfabrication process, an input/output coupler with E-plane bending has been designed, which can be fabricated by using only one mask UV-LIGA process.

Citation:
X. Shi, L. R. Billa, Y.-B. Gong, M. N. Akram, and X. Chen, "High Efficiency and High Power Staggered Double Vane TWT Amplifier Enhanced by Velocity-Taper Design," Progress In Electromagnetics Research C, Vol. 66, 39-46, 2016.
doi:10.2528/PIERC16050305

References:
1. Booske, J. H., "Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation," Phys. Plasmas, Vol. 15, No. 5, 055 502-1-055 502-16, May 2008.
doi:10.1063/1.2838240

2. Borsuk, G. M. and B. Levush, "Vacuum electronics research perspective at the naval research laboratory," IEEE Int. Vacuum Electron. Conf., 3, Monterey, USA, May 21–24, 2010.

3. Tucek, J., M. Basten, D. Gallagher, and K. Kreischer, "Sub-millimeter and THz power amplifier development at Northrop Grumman," IEEE Int. Vacuum Electron. Conf., 19, Monterey, USA, May 21–24, 2010.

4. Siegel, P. H., "Terahertz technology," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 910-928, 2002.
doi:10.1109/22.989974

5. Shin, Y. M., A. Baig, L. R. Barnett, W. C. Tsai, and N. C. Luhmann, "System design analysis of a 0.22-THz sheet-beam traveling-wave tube amplifier," IEEE Transactions on Electron Devices, Vol. 59, No. 1, 234-240, 2012.
doi:10.1109/TED.2011.2173575

6. Shin, Y. M., A. Baig, L. R. Barnett, N. C. Luhmann, J. Pasour, and P. Larsen, "Modeling investigation of an ultrawideband terahertz sheet beam traveling-wave tube amplifier circuit," IEEE Transactions on Electron Devices, Vol. 58, No. 9, 3213-3218, 2011.
doi:10.1109/TED.2011.2159842

7. Xu, X., Y. Wei, F. Shen, Z. Duan, Y. Gong, H. Yin, and W. Wang, "Sine waveguide for 0.22-THz traveling-wave tube," IEEE Electron Device Letters, Vol. 32, 1152, 2011.
doi:10.1109/LED.2011.2158060

8. Booske, J. H., et al., "Vacuum electronic high power terahertz sources," IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, 54-75, 2011.
doi:10.1109/TTHZ.2011.2151610

9. Booske, J. H., B. D. Mcveya, and T. M. Antonsen, "Stability and confinement of nonrelativistic with periodic cusped magnetic focusing," J. Appl. Phys., Vol. 73, No. 9, 4140-4155, 1993.
doi:10.1063/1.352847

10. Shin, Y. M., L. R. Barnett, and N. C. Luhmann, "Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation," IEEE Transactions on Electron Devices, Vol. 56, No. 5, 706-712, 2009.
doi:10.1109/TED.2009.2015404

11. Shin, Y. M., A. Baig, L. R. Barnett, N. C. Luhmann, J. Pasour, and P. Larsen, "Modeling investigation of an ultrawideband terahertz sheet beam traveling-wave tube amplifier circuit," IEEE Transactions on Electron Devices, Vol. 58, No. 9, 3213-3218, 2011.
doi:10.1109/TED.2011.2159842

12. Shin, Y. M., A. Baig, L. R. Barnett, W. C. Tsai, and N. C. Luhmann, "System design analysis of a 0.22-THz sheet-beam traveling-wave tube amplifier," IEEE Transactions on Electron Devices, Vol. 59, No. 1, 234-240, 2012.
doi:10.1109/TED.2011.2173575

13. Shi, X., Z. Wang, X. Tang, T. Tang, H. Gong, Q. Zhou, W. Bo, Y. Zhang, Z. Duan, Y. Wei, Y. Gong, and J. Feng, "Study on wideband sheet beam traveling wave tube based on staggered double vane slow wave structure," IEEE Trans. Plasma Sci., Vol. 42, No. 12, 3996-4003, 2014.
doi:10.1109/TPS.2014.2365582

14. Ghosh, T. K., A. J. Challis, A. Jacob, and D. Bowler, "Design of helix pitch profile for broadband traveling-wave tubes," IEEE Transactions on Electron Devices, Vol. 56, No. 5, 1135-1140, 2009.
doi:10.1109/TED.2009.2015137

15. Bo, W., Q. Zhou, Y. Zhang, and X. Shi, "Research on 0.22THz folded-waveguide traveling-wave tube with a proper phase-velocity taper," IEEE International Vacuum Electronics Conference, 4-5, 2015.

16. Gong, Y., H. Yin, L. Yue, Z. Lu, Y. Wei, J. Feng, Z. Duan, and X. Xu, "A 140-GHz two-beam overmoded folded-waveguide traveling-wave tube," IEEE Transactions on Electron Devices, Vol. 39, 847, 2011.

17. Nguyen, K., L. Ludeking, J. P. D. Pershing, E. Wright, D. K. Abe, and B. Levush, "Design of terahertz Extended Interaction Klystrons," IEEE Int. Vacuum Electron. Conf., 23, Monterey, USA, May 21–24, 2010.


© Copyright 2010 EMW Publishing. All Rights Reserved