Vol. 66
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-08-17
Power-Combined Multipliers at 60 GHz Based on Fundamental Frequency Vector Modulation
By
Progress In Electromagnetics Research C, Vol. 66, 191-199, 2016
Abstract
High output power multiplier is necessary for local oscillator (LO) source of millimeter-wave and terahertz applications. However, single multiplier chip power-handling capability is limited by understandably low efficiency level and other technical constraints. Conventional in-phase power-combined structures are sensitive to the fabrication and assembly errors. In order to circumvent these limits, we propose a power-combined multiplier architecture at 60 GHz based on fundamental frequency vector modulation at 30 GHz. The fundamental vector modulator adjustment can compensate the phase deviation at the two doubler output ports despite fabrication and assembly tolerances. We can increase the output power by approximately 3 dB compared with single multiplier without sacrificing the bandwidth.
Citation
Pengfei Sun, Liang Wu, Jinyi Ding, and Xiao-Wei Sun, "Power-Combined Multipliers at 60 GHz Based on Fundamental Frequency Vector Modulation," Progress In Electromagnetics Research C, Vol. 66, 191-199, 2016.
doi:10.2528/PIERC16052502
References

1. Schellenberg, J., E. Watkins, M. Micovic, B. Kim, and K. Han, "W-band, 5W solid-state power amplifier/combiner," IEEE MTT-S Int. Dig., 240-243, May 2010.

2. Lee, C., et al. "A wafer-level diamond bonding process to improve power handling capability of submillimeter-wave Schottky diode frequency multipliers," IEEE MTT-S Int. Dig., 957-960, Jun. 2009.

3. Nosaeva, K., et al. "Multifinger indium phosphide double-heterostructure transistor circuit technology with integrated diamond heat sink layer," IEEE Trans. Electron Devices, Vol. 63, No. 5, 1846-1852, May 2016.
doi:10.1109/TED.2016.2533669

4. Schwantuschke, D., P. Brckner, R. Quay, M. Mikulla, and O. Ambacher, "High-gain millimeter-wave AlGaN/GaN transistors," IEEE Trans. Electron Devices, Vol. 60, No. 10, 3112-3118, Oct. 2013.
doi:10.1109/TED.2013.2272180

5. Teppati, V., et al. "A W-band on-wafer active load-pull system based on down-conversion techniques," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 1, 148-153, Jan. 2014.
doi:10.1109/TMTT.2013.2292042

6. Belaid, M. and K. Wu, "Frequency multiplier using waveguide-based spatial power-combining architecture," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1124-1129, Apr. 2005.
doi:10.1109/TMTT.2005.845720

7. Schumann, B., M. Hoft, and R. Judaschke, "A multi-element 150/300 GHz spatial power dividing/combining frequency doubler," IEEE MTT-S Int. Dig., 1539-1542, 2002.

8. Magath, T., M. Hoft, and R. Judaschke, "A two-dimensional quasi-optical power combining oscillator array with external injection locking," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, 567-572, Feb. 2004.
doi:10.1109/TMTT.2003.821932

9. Kirby, P. L., Y. Li, Q. Xiao, J. L. Hesler, and J. Papapolymerou, "Power combining multiplier using HBV diodes at 260 GHz," 2008 Asia-Pacific Microw. Conf., 1-4, Dec. 2008.
doi:10.1109/APMC.2008.4957898

10. Maestrini, A., et al. "In-phase power combining of submillimeter-wave multipliers," 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, 1-2, 2008.

11. Maestrini, A., et al. "In-phase power-combined frequency triplers at 300 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 3, 218-220, Mar. 2008.
doi:10.1109/LMWC.2008.916820

12. Siles, J. V., et al. "A single-waveguide in-phase power-combined frequency doubler at 190GHz," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 6, 332-334, Jun. 2011.
doi:10.1109/LMWC.2011.2134080

13. Siles, J. V., et al. "A dual-output 550 GHz frequency tripler featuring ultra-compact silicon micromachining packaging and enhanced power-handling capabilities," 2015 Eur. Microw. Conf., 845-848, 2015.
doi:10.1109/EuMC.2015.7345896

14. Chen, Z. and J. Xu, "Design and characterization of aW-band power-combined frequency tripler for high-power and broadband operation," Progress In Electromagnetics Research, Vol. 134, 133-150, 2013.
doi:10.2528/PIER12092009

15. Dong, J., Y. Liu, Z. Yang, H. Peng, and T. Yang, "Broadband millimeter-wave power combiner using compact SIW to waveguide transition," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 9, 567-569, Sept. 2015.
doi:10.1109/LMWC.2015.2451366

16. Yin, K., K. Zhang, and J. Xu, "Characterization and design of millimeter-wave full-band waveguidebased spatial power divider/combiner," Progress In Electromagnetics Research C, Vol. 50, 65-74, 2014.
doi:10.2528/PIERC14031604

17. Siles, J. V., L. Choonsup, R. Lin, G. Chattopadhyay, T. Reck., C. Jung-Kubiak, I. Mehdi, and K. B. Cooper, "A high-power 105–120 GHz broadband on-chip power-combined frequency tripler," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 3, 157-159, Mar. 2015.
doi:10.1109/LMWC.2015.2390539

18. Hou, Y., L. Li, R. Qian, and X. Sun, "An efficient technique for designing high-performance millimeter-wave vector modulators with low temperature drift," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 3100-3107, Dec. 2008.
doi:10.1109/TMTT.2008.2006808

19. Han, K., M. Yang, Y. Sun, M. Chen, and X. Sun, "The integration of millimeter-wave active phased array antenna based on vector modulation technology," IEEE Electr. Design Adv. Package & Syst. Symp., 1-4, Dec. 2011.

20. Ding, J., Q. Wang, Y. Zhang, and C. Wang, "A novel five-port waveguide power divider," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 4, 224-226, Apr. 2014.
doi:10.1109/LMWC.2013.2295227