PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 67 > pp. 185-192

AN IMPROVED BROADBAND SIW PHASE SHIFTER WITH EMBEDDED AIR STRIPS

By H. Peng, X. Xia, S. O. Tatu, and T. Yang

Full Article PDF (1,205 KB)

Abstract:
In this paper, an improved broadband substrate integrated waveguide (SIW) phase shifter with embedded air strips is presented. Phase shifter can be generated based on the variable widths of SIW, variable lengths of microstrip line and a row of embedded air strips. The simulated and measured results both show that this kind of SIW phase shifter has excellent performance for a wider bandwidth. Measured results indicate that the proposed SIW phase shifters for the 45° and 90° versions have achieved the fractional bandwidths of 59.6% from 10.2 to 18.85 GHz with the accuracy of 2.5°, and of 62.3% from 9.5 to 18.1 GHz with the accuracy of 5°, respectively. The return losses are better than 15.8 dB and 14.5 dB for 45° and 90° modules, respectively. In addition, the insertion losses are both found to be better than 1.6 dB in the considered band.

Citation:
H. Peng, X. Xia, S. O. Tatu, and T. Yang, "An Improved Broadband SIW Phase Shifter with Embedded Air Strips," Progress In Electromagnetics Research C, Vol. 67, 185-192, 2016.
doi:10.2528/PIERC16080904

References:
1. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microwave Wireless Components Letters, Vol. 12, No. 9, 333-335, Sep. 2002.
doi:10.1109/LMWC.2002.803188

2. Cheng, Y. J., W. Hong, and K. Wu, "Broadband self-compensating phase shifter combining delay line and equal-length unequal-width phaser," IEEE Transactions on Microwave Theory and Technology, Vol. 58, No. 1, 203-210, Jan. 2010.
doi:10.1109/TMTT.2009.2035942

3. Sellal, K., L. Talbi, T. A. Denidni, and J. Lebel, "Design and implementation of a substrate integrated waveguide phase shifter," IET Microwaves Antennas and Propagation, Vol. 2, No. 2, 194-199, Mar. 2008.
doi:10.1049/iet-map:20070135

4. Sellal, K., L. Talbi, and M. Nedil, "Design and implementation of a controllable phase shifter using substrate integrated waveguide," IET Microwaves Antennas and Propagation, Vol. 6, No. 9, 1090-1094, Jun. 2012.
doi:10.1049/iet-map.2011.0380

5. Kuhestani, H., M. Naser-Moghadasi, M. Maleki, and F. B. Zarrabi, "Phase shifter designing base on half mode substrate integrated waveguide with reconfigurable quality," Microwave and Optic Technology Letters, Vol. 57, No. 11, 2562-2567, Aug. 2015.
doi:10.1002/mop.29399

6. Yang, T., M. Ettorre, and R. Sauleau, "Novel phase shifter design based on substrate-integratedwaveguide technology," IEEE Microwave Wireless Components Letters, Vol. 22, No. 10, 518-520, Oct. 2012.
doi:10.1109/LMWC.2012.2217122

7. Ebrahimpouri, M., S. Nikmehr, and A. Pourziad, "Broadband compact SIW phase shifter using Omega particles," IEEE Microwave Wireless Components Letters, Vol. 24, No. 11, 748-750, Nov. 2014.
doi:10.1109/LMWC.2014.2350692

8. Djerafi, T., K. Wu, and S. O. Tatu, "Substrate-integrated waveguide phase shifter with rod-loaded artificial dielectric slab," Electronics Letters, Vol. 51, No. 9, 707-709, Apr. 2015.
doi:10.1049/el.2015.0286

9. Boudreau, I., K. Wu, and D. Deslandes, "Broadband phase shifter using air holes in substrate integrated waveguide," IEEE MTT-S International Microwave Symposium Digest, 1-4, Baltimore, United States, 2011.

10. Yang, F., H. X. Yu, B. Zhang, Y. Zhou, and Z. X. Zhu, "Substrate integrated waveguide phase shifter," International Conference on Electronics, Communications and Control, 3966-3968, Zhejiang, China, 2011.

11. Ding, Y. and K. Wu, "SIW varactor-tuned phase shifter and phase modulator," IEEE MTT-S Int. Microwave Symposium Digest, 1-3, Montreal, Canada, 2012.

12. Ding, Y. and K. Wu, "Varactor-tuned substrate integrated waveguide phase shifter," IEEE MTT-S Int. Microwave Symposium Digest, 1-4, Baltimore, United States, 2011.

13. Che, W., E. K.-N. Yung, K. Wu, and X. Nie, "Design investigation on millimeter-wave ferrite phase shifter in substrate integrated waveguide," Progress In Electromagnetics Research, Vol. 45, 263-275, 2004.
doi:10.2528/PIER03082801

14. Cheng, Y. J., Q. Huang, Y. Zhou, and C. Weng, "Ferrite-loaded half mode substrate integrated waveguide phase shifter," Progress In Electromagnetics Research Letters, Vol. 47, 85-90, 2014.
doi:10.2528/PIERL14052401

15. Wang, Z., B. Yan, R.-M. Xu, and Y. Guo, "Design of a ku band six bit phase shifter using periodically loaded-line and switched-line with loaded-line," Progress In Electromagnetics Research, Vol. 76, 369-379, 2007.
doi:10.2528/PIER07071904

16. Cao, W.-Q., B. Zhang, A. Liu, T. Yu, D. Guo, and Y. Wei, "Novel phase-shifting characteristic of CRLH TL and its application in the design of dual-band dual-mode dual-polarization antenna," Progress In Electromagnetics Research, Vol. 131, 375-390, 2012.
doi:10.2528/PIER12081007

17. Kordiboroujeni, Z. and J. Bornemann, "New wideband transition from microstrip line to substrate integrated waveguide," IEEE Transactions on Microwave Theory and Technology, Vol. 62, No. 12, 2983-2989, Dec. 2014.
doi:10.1109/TMTT.2014.2365794

18. Bosisio, R. G., Y. Y. Zhao, X. Y. Xu, S. Abielmona, E. Moldovan, Y. S. Xu, M. Bozzi, S. O. Tatu, C. Nerguisian, J. F. Frigon, C. Caloz, and K. Wu, "New-wave radio," IEEE Microwave Magazine, Vol. 9, No. 1, 89-100, Feb. 2008.
doi:10.1109/MMM.2007.910923

19. Boukari, B., E. Moldovan, R. I. Cojocaru, K. Wu, R. G. Bosisio, and S. O. Tatu, "Millimeter-wave six-port in combined microstrip and substrate-integrated waveguide technologies," Microwave and Optic Technology Letters, Vol. 52, No. 11, 2488-2493, Aug. 2010.
doi:10.1002/mop.25538


© Copyright 2010 EMW Publishing. All Rights Reserved