PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 69 > pp. 159-167

AMC-INTEGRATED RECONFIGURABLE BEAMFORMING FOLDED DIPOLE ANTENNA WITH PARASITIC AND RF MEMS

By H. Lago, M. F. Jamlos, P. J. Soh, and G. A. E. Vandenbosch

Full Article PDF (935 KB)

Abstract:
A beam-reconfigurable printed antenna on an Artificial Magnetic Conductor (AMC) is proposed for navigation and radiolocation applications at a frequency of 9.41 GHz. The AMC is formed based on a periodic Jerusalem cross shaped slot structure and is located in between two substrate layers, close to the radiator. The AMC plane has a bandwidth of 1.95 GHz around the targeted frequency of 9.41 GHz. By integrating micro-electro-mechanical system (MEMS) switches on the folded patches in combination with parasitic elements, a beam steering capability of up to ±58° is achieved with a rear full ground plane. This eliminates the need for a mechanical steering system, which is traditional in the applications targeted. The antenna achieves a high gain of 8.08 dB and 90% efficiency. A good agreement between simulated and measured results is obtained.

Citation:
H. Lago, M. F. Jamlos, P. J. Soh, and G. A. E. Vandenbosch, "AMC-Integrated Reconfigurable Beamforming Folded Dipole Antenna with Parasitic and RF MEMS," Progress In Electromagnetics Research C, Vol. 69, 159-167, 2016.
doi:10.2528/PIERC16082403

References:
1. Zhu, H. L., S. W. Cheng, and T. I. Yuk, "Mechanically pattern reconfigurable antenna using metasurface," IEEE Transaction on Antennas and Propagation, Vol. 9, 1331-1336, 2015.

2. Edalati, A. and T. A. Denidni, "Frequency selective surface for beam-switching application," IEEE Transaction on Antennas and Propagation, Vol. 61, 195-200, 2013.
doi:10.1109/TAP.2012.2219842

3. Rodrigo, D., B. A. Cetiner, and L. Jofre, "Frequency, radiation pattern and polarization reconfigurable antenna using a parasitic pixel layer," IEEE Transaction on Antennas and Propagation, Vol. 62, 3422-3427, 2014.
doi:10.1109/TAP.2014.2314464

4. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Lorris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Transaction on Antennas and Propagation, Vol. 52, 1434-1445, 2004.
doi:10.1109/TAP.2004.825648

5. Kovitz, J. M., H. Rajagopalan, and Y. Rahmat-Samii, "Design and implementation of broadband MEMS RHCP/LHCP reconfigurable arrays using rotated E-shaped patch elements," IEEE Transaction on Antennas and Propagation, Vol. 63, 2497-2507, 2015.
doi:10.1109/TAP.2015.2417892

6. Gianvittorio, J. P. and Y. Rahmat-Samii, "Reconfigurable patch antennas for steerable reflectarray applications," IEEE Transaction on Antennas and Propagation, Vol. 54, 1388-1392, 2006.
doi:10.1109/TAP.2006.874311

7. Petit, L., L. Dussopt, and J.-M. Laheurte, "MEMS-switched parasitic -antenna array for radiation pattern diversity," IEEE Transaction on Antennas and Propagation, Vol. 54, 2634-2631, 2006.
doi:10.1109/TAP.2006.880751

8. Qin, P.-Y., Y. J. Guo, and C. Ding, "A beam switching quasi-Yagi dipole antenna," IEEE Transaction on Antennas and Propagation, Vol. 6, 4891-4899, 2013.
doi:10.1109/TAP.2013.2274635

9. Donelli, M., R. Azaro, L. Fimognari, and A. Massa, "A planer electronically reconfigurable Wi-Fi band antenna based on a parasitic microstrip structure," IEEE Antennas Wireless Propagation Letter, Vol. 6, 623-626, 2007.
doi:10.1109/LAWP.2007.913274

10. Ding, C., Y. J Guo, P. -Y. Qin, T. S. Bird, and Y. Yang, "A defected microstrip structure (DMS)- based phase shifter and its application to beamforming antenna," IEEE Transaction on Antennas and Propagation, Vol. 62, 641-651, 2014.
doi:10.1109/TAP.2013.2290802

11. Li, M., S.-Q. Xiao, Z. Wang, and B.-Z. Wang, "Compact surface-wave assisted beam-steerable antenna based on HIS," IEEE Transaction on Antennas and Propagation, Vol. 62, 3511-3519, 2014.
doi:10.1109/TAP.2014.2321161

12. Akhoondzadeh-Asl, L., D. J. Kern, P. S. Hall, and D. H. Werner, "Wide-bands dipoles on electromagnetic bandgap ground planes," IEEE Transaction on Antennas and Propagation, Vol. 55, 2426-2434, 2007.
doi:10.1109/TAP.2007.904071

13. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Transaction on Antennas and Propagation, Vol. 57, 926-935, 2009.
doi:10.1109/TAP.2009.2014527

14. Mosallaei, H. and K. Sarabandi, "Antenna miniturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transaction on Antennas and Propagation, Vol. 52, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135

15. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low-profile dual-band textile antenna with artificial magnetic conductor plane," IEEE Transaction on Antennas and Propagation, Vol. 62, 6487-6490, 2014.
doi:10.1109/TAP.2014.2359194

16. Cook, B. S. and A. Shamim, "Utilizing wideband AMC strucutre for high-gain inkjet-printed antennas on lossy paper substrate," IEEE Antennas Wireless Propagation Letter, Vol. 12, 76-79, 2013.
doi:10.1109/LAWP.2013.2240251

17. Joubert, J., J. C. Vardaxoglou, W. G. Whittow, and J. W. Odendaal, "CPW-fed cavity-backed slot radiator loaded with an AMC reflector," IEEE Transaction on Antennas and Propagation, Vol. 60, 735-742, 2012.
doi:10.1109/TAP.2011.2173152

18. Abbasi, N. A. and R. J. Langley, "Multiband-integrated antenna/artificial magnetic conductor," IET Microwave Antennas Propagation, Vol. 5, 711-717, 2011.
doi:10.1049/iet-map.2010.0200

19. Yang, W. C., H. Wang, W. Q. che, Y. Huang, and J. Wang, "High-gain and low-loss millimeterwave LTCC antenna array using artificial magnetic conductor structure," IEEE Transaction on Antennas and Propagation, Vol. 63, 390-395, 2015.
doi:10.1109/TAP.2014.2364591

20. Folayan, O. and R. Langley, "Dual frequency band antenna combined with a high impedance band gap surface," IET Microwave Antennas Propagation, Vol. 3, 1118-1126, 2009.
doi:10.1049/iet-map.2008.0141

21. Ren, J., X. Yang, J. Yin, and Y. Yin, "A novel antenna with reconfigurable patterns using H-shaped structures," IEEE Antennas Wireless and Propagation Letter, Vol. 14, 915-918, 2015.
doi:10.1109/LAWP.2014.2387292

22. Kang, W., K. H. Ko, and K. Kim, "A compact beam reconfigurable antenna for symmetric beam switching," Progress In Electromagnetics Research, Vol. 129, 1-16, 2012.
doi:10.2528/PIER12032005

23. Bai, Y.-Y., S. Xiao, C. Liu, X. Shuai, and B.-Z. Wang, "Design of pattern reconfgurable antennas based on a two-element dipole array model," IEEE Transaction on Antennas and Propagation, Vol. 61, 4867-4871, 2013.
doi:10.1109/TAP.2013.2270175

24. Huff, G. H. and J. T. Bernnhard, "Integration of packaged RF MEMS switch with radiation pattern reconfigurable square spiral microstrip antennas," IEEE Transaction on Antennas and Propagation, Vol. 54, 464-469, 2006.
doi:10.1109/TAP.2005.863409

25. Safari, M., C. Shafai, and L. Shafai, "X-band tunable frequency selective surface using MEMS capacitive loads," IEEE Transaction on Antennas and Propagation, Vol. 63, 1014-1021, 2015.
doi:10.1109/TAP.2014.2386304

26., , http://www.radantmems.com.
doi:10.1109/TAP.2014.2386304

27. Qin, P.-Y., Y. J. Guo, A. R. Weily, and C.-H. Liang, "A pattern reconfigurable U-slot antenna and its application in MIMO system," IEEE Transaction on Antennas and Propagation, Vol. 60, 516-528, 2012.
doi:10.1109/TAP.2011.2173439

28. Kittiyanpunya, C. and M. Krairiksh, "A four-beam pattern reconfigurable Yagi-Uda antenna," IEEE Transaction on Antennas and Propagation, Vol. 61, 6210-6214, 2013.
doi:10.1109/TAP.2013.2282914

29. Kim, K., K. Hwang, J. Ahn, and Y. Yoon, "Pattern reconfigurable antenna for wireless sensor network system," Electronic Letter, Vol. 48, 984-985, 2012.
doi:10.1049/el.2012.1532

30. Lago, H., M. F. Jamlos, N. Bahari, and M. R. Hamid, "Reconfigurable beam pattern folded dipole antenna based on AMC structure," IEEE International RF and Microwave Conference (RFM), 14-16, Kucing, Sarawak, Dec. 2015.

31. Vallecchi, A., J. R. De Luis, F. Capolino, and F. De Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Transaction on Antennas and Propagation, Vol. 60, 51-62, 2014.
doi:10.1109/TAP.2011.2167912

32. Liu, X. Y., Y. H. Di, H. Lui, Z. T. Wu, and M. M. Tentzeris, "A planar windmill-like broadband antenna equipped with artificial magnetic conductor for off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 64-67, 2016.
doi:10.1109/LAWP.2015.2429683

33. Meloui, M. and M. Essaaidi, "A dual ultra wide band slotted antenna for C and X bands application," Progress in Electromagnetics Research Letters, Vol. 47, 91-96, 2014.
doi:10.2528/PIERL14052103


© Copyright 2010 EMW Publishing. All Rights Reserved