PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 71 > pp. 123-131

WIDEBAND METAMATERIAL SOLAR CELL ANTENNA FOR 5 GHZ WI-FI COMMUNICATION

By M. Elsdon, O. Yurduseven, and X. Dai

Full Article PDF (675 KB)

Abstract:
In this paper, a novel design for a wideband integrated photovoltaic (PV) solar cell patch antenna for 5 GHz Wi-Fi communication is presented and discussed. The design consists of a slot loaded patch antenna with an array of complimentary split ring resonators (cSRR) etched in the ground plane. This is then integrated with a solar cell element placed above the patch, where the ground plane of the solar cell acts as a stacked antenna element from an RF perspective. The design is simulated on CST Microwave Studio and fabricated. The results indicate that an impedance bandwidth of 1 GHz is achieved to cover the 5 GHz Wi-Fi band with a gain of between 7.73 dBi and 8.18 dBi across this band. It is also demonstrated that size reduction of up to 25% can be achieved. Moreover, it is noted that using a metamaterial loaded ground plane acts as an impedance transformer, therefore the antenna can be fed directly with a 50 Ω microstrip feed line, hence further reducing the overall size.

Citation:
M. Elsdon, O. Yurduseven, and X. Dai, "Wideband Metamaterial Solar Cell Antenna for 5 GHz Wi-Fi Communication," Progress In Electromagnetics Research C, Vol. 71, 123-131, 2017.
doi:10.2528/PIERC16110302

References:
1. Ang, B.-K. and B.-K. Chung, "A wideband e-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

2. O’Conchubhair, O., P. McEvoy, and M. J. Ammann, "Integration of antenna array with multicrystalline silicon solar cell," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1231-1234, 2015.
doi:10.1109/LAWP.2015.2399652

3. Caso, R., A. D’Alessandro, A. Michel, and P. Nepa, "Integration of slot antennas in commercial photovoltaic panels for stand-alone communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 62-69, Jan. 2013.
doi:10.1109/TAP.2012.2220111

4. Ang, B. K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

5. Moharram, M. A. and A. A. Kishk, "Optically transparent reflectarray antenna design integrated with solar cells," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1700-1712, May 2016.
doi:10.1109/TAP.2016.2539379

6. Veselago, V. G., "he electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

7. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

8. Raghavan, S. and V. Anoop Jayaram, "Metamaterial loaded wideband patch antenna," PIERS Proceedings, 760-763, Taipei, Taiwan, Mar. 25–28, 2013.

9. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high gain antenna using metamaterial superstrate with the zero refractive index," Microwave and Optical Technology Letters, Vol. 51, No. 8, 1973-1976, 2009.
doi:10.1002/mop.24469

10. Li, L.-W., Y.-N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, "A broadband and high-gain metamaterial microstrip antenna," Applied Physics Letters, Vol. 96, 164101, 2010.
doi:10.1063/1.3396984

11. Turpin, T. W. and R. Baktur, "Meshed patch antennas integrated on solar cells," IEEE Antennas Wireless Propag. Lett., Vol. 8, 693-696, 2009.
doi:10.1109/LAWP.2009.2025522

12. Yurduseven, O., D. Smith, and M. Elsdon, "UWB meshed solar monopole antenna," Electron. Lett., Vol. 49, No. 9, 582-584, Apr. 2013.
doi:10.1049/el.2013.0478

13. Ito, K. and M. Wu, "See-through microstrip antennas constructed on a transparent substrate," Seventh International Conference on Antennas and Propagation, Vol. 1, 133-136, 1991.

14. Yasin, T., R. Baktur, and C. Furse, "A study on the efficiency of transparent patch antennas designed from conductive oxide films," IEEE International Symposium on Antennas and Propagation (APSURSI), 3085-3087, 2011.
doi:10.1109/APS.2011.5997183

15. Yurduseven, O. and D. Smith, "A solar cell stacked multi-slot quad-band PIFA for GSM, WLAN and WiMAX networks," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 6, 285-287, Jun. 2013.
doi:10.1109/LMWC.2013.2258006

16. Danesh, M. and J. R. Long, "An autonomous wireless sensor node incorporating a solar cell antenna for energy harvesting," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3546-3555, Nov. 2011.
doi:10.1109/TMTT.2011.2171043

17. Vaccaro, S., J. R. Mosig, and P. de Maagt, "Making planar antennas out of solar cells," Electron. Lett., Vol. 38, No. 17, 945-947, Aug. 2002.
doi:10.1049/el:20020675

18. Yurduseven, O., D. Smith, N. Pearsall, and I. Forbes, "A solar cell stacked slot-loaded suspended microstrip patch antenna with multiband resonance characteristics for WLAN and WiMAX systems," Progress In Electromagnetics Research, Vol. 142, 321-332, 2013.
doi:10.2528/PIER13081502


© Copyright 2010 EMW Publishing. All Rights Reserved