PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 71 > pp. 1-7

LOW FREQUENCY BEHAVIOR OF CVD GRAPHENE FROM DC TO 40 GHZ

By R. Wang, S. Raju, M. Chan, and L. J. Jiang

Full Article PDF (913 KB)

Abstract:
Electromagnetic behaviour of chemical vapor deposition (CVD) graphene at low frequencies is still a mystery. No conclusion is made from the experimental point of views. Here, we systematically investigate the electromagnetic response of graphene at microwave frequencies, which are from direct current (DC) to 40 GHz. Both a coplanar transmission line embedded with different-sized graphene akes of 48 × 48 and 48 × 240 um2 and a microwave termination based on the graphene sheet of 6 × 6 mm2 are manufactured through the chemical vapor deposition (CVD) and standard microfabrication procedures. We conclude that graphene behaves as a frequency-independent surface resistance at the microwave frequencies, which is consistent with the theoretical model by rigorously solving the Maxwell's equations with the Kubo formula. The work offers a simple, accurate, and conclusive electromagnetic analysis to graphene and thus is of great help to design graphene incorporated microwave components and devices.

Citation:
R. Wang, S. Raju, M. Chan, and L. J. Jiang, "Low Frequency Behavior of CVD Graphene from DC to 40 GHz ," Progress In Electromagnetics Research C, Vol. 71, 1-7, 2017.
doi:10.2528/PIERC16111901

References:
1. Novoselov, K. S., A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Vol. 438, No. 7065, 197-200, 2005.
doi:10.1038/nature04233

2. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nat. Mater., Vol. 6, No. 3, 183-191, 2007.
doi:10.1038/nmat1849

3. Du, X., I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nat. Nanotechnol., Vol. 3, No. 8, 491-495, 2008.
doi:10.1038/nnano.2008.199

4. Neto, A. C., F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., Vol. 81, No. 1, 109-162, 2009.
doi:10.1103/RevModPhys.81.109

5. Geim, A. K., "Graphene: Status and prospects," Science, Vol. 324, No. 5934, 1530-1534, 2009.
doi:10.1126/science.1158877

6. Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys.: Condens. Matter, Vol. 19, No. 2, 026222, 2006.
doi:10.1088/0953-8984/19/2/026222

7. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452

8. Hanson, G. W., "Dyadic Green’s functions for an anisotropic, non-local model of biased graphene," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 747-757, 2008.
doi:10.1109/TAP.2008.917005

9. Jablan, M., H. Buljan, and M. Soljacic, "Plasmonics in graphene at infrared frequencies," Phys. Rev. B, Vol. 80, No. 24, 245435, 2009.
doi:10.1103/PhysRevB.80.245435

10. Mikhailov, S. A. and K. Ziegler, "New electromagnetic mode in graphene," Phys. Rev. Lett., Vol. 99, No. 1, 016803, 2007.
doi:10.1103/PhysRevLett.99.016803

11. Lee, S. H., M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, and S. Y. Choi, "Switching terahertz waves with gate-controlled active graphene metamaterials," Nat. Mater., Vol. 11, No. 11, 936-941, 2012.
doi:10.1038/nmat3433

12. Bao, Q., H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, "Broadband graphene polarizer," Nat. Photonics, Vol. 5, No. 7, 411-415, 2011.
doi:10.1038/nphoton.2011.102

13. Yao, Y., M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, "Broad electrical tuning of graphene-loaded plasmonic antennas," Nano Lett., Vol. 13, No. 3, 1257-1264, 2013.
doi:10.1021/nl3047943

14. Awan, S. A., A. Lombardo, A. Colli, G. Privitera, T. S. Kulmala, J. M. Kivioja, M. Koshino, and A. C. Ferrari, "Transport conductivity of graphene at RF and microwave frequencies," 2D Mater., Vol. 3, No. 1, 015010, 2016.
doi:10.1088/2053-1583/3/1/015010

15. Chang, Y. C., C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, "Realization of mid-infrared graphene hyperbolic metamaterials," Nat. Commun., Vol. 7, 10568, 2016.
doi:10.1038/ncomms10568

16. Llatser, I., C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcon, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation," Photonics Nanostruct. Fundam. Appl., Vol. 10, No. 4, 353-358, 2012.
doi:10.1016/j.photonics.2012.05.011

17. Horng, J., C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, "Drude conductivity of Dirac fermions in graphene," Phys. Rev. B, Vol. 83, No. 16, 165113, 2011.
doi:10.1103/PhysRevB.83.165113

18. Abedinpour, S. H., G. Vignale, A. Principi, M. Polini, W. K. Tse, and A. H. MacDonald, "Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets," Phys. Rev. B, Vol. 84, No. 4, 045429, 2011.
doi:10.1103/PhysRevB.84.045429

19. Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, Vol. 324, No. 5932, 1312-1314, 2009.
doi:10.1126/science.1171245

20. Ferrari, A. C., J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, and S. Roth, "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett., Vol. 97, No. 18, 187401, 2006.
doi:10.1103/PhysRevLett.97.187401

21. Blake, P., E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Appl. Phys. Lett., Vol. 91, No. 6, 063124, 2007.
doi:10.1063/1.2768624


© Copyright 2010 EMW Publishing. All Rights Reserved