PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 73 > pp. 55-64

EFFICIENT DUAL-BAND ASYMMETRIC TRANSMISSION OF LINEARLY POLARIZED WAVE USING A CHIRAL METAMATERIAL

By Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu

Full Article PDF (1,722 KB)

Abstract:
In this paper, a three-layered chiral metamaterial composed of three twisted split-ring resonators is proposed and investigated. The simulated and measured results show that the proposed metamaterial can achieve efficient asymmetric transmission of linearly polarized wave and cross-polarization conversion for two distinct bands: X (6.95-10.05 GHz) and Ku (15.55-18.47 GHz). In the X-band, an incident y-polarized wave is almost converted to a x-polarized wave, while an incident x-polarized wave is completely blocked from passing through the structure. In the Ku-band, an incident x-polarized wave is almost converted to a y-polarized wave, while an incident y-polarized wave is blocked from passing through the structure. Moreover, the simulated and measured results confirm that the proposed metamaterial has a good robustness to misalignment, which provides convenience for fabricating in practical applications. Finally, the physical mechanism of this dual-band asymmetric transmission effect can be explained based on the different resonant modes of the proposed structure.

Citation:
Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu, "Efficient Dual-Band Asymmetric Transmission of Linearly Polarized Wave Using a Chiral Metamaterial," Progress In Electromagnetics Research C, Vol. 73, 55-64, 2017.
doi:10.2528/PIERC17011602

References:
1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

2. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

3. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
doi:10.1126/science.1108759

4. Ye, Y. and S. He, "90 polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, No. 20, 788, 2010.
doi:10.1063/1.3429683

5. Chen, J. and A. Zhang, "A linear-to-circular polarizer using split ring resonators," Applied Computational Electromagnetics Society Journal, Vol. 28, No. 6, 507-512, 2013.

6. Cheng, Y., Y. Nie, Z. Cheng, and R. Z. Gong, "Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial," Progress In Electromagnetics Research, Vol. 145, 263-272, 2014.
doi:10.2528/PIER14020501

7. Fedotov, V. A., A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures," Nano Lett., Vol. 7, No. 7, 1996-1999, 2007.
doi:10.1021/nl0707961

8. Singh, R., E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, "Terahertz metamaterial with asymmetric transmission," Phys. Rev. B, Vol. 80, No. 15, 153104(5), 2009.
doi:10.1103/PhysRevB.80.153104

9. Schwanecke, A. S., V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, "Nanostructured metal film with asymmetric optical transmission," Nano Lett., Vol. 8, No. 9, 2940-2943, 2008.
doi:10.1021/nl801794d

10. Plum, E., V. A. Fedotov, and N. I. Zheludev, "Planar metamaterial with transmission and reflection that depend on the direction of incidence," Appl. Phys. Lett., Vol. 94, No. 13, 131901, 2009.
doi:10.1063/1.3109780

11. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, No. 25, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902

12. Kang, M., J. Chen, H. X. Cui, Y. Li, and H. T. Wang, "Asymmetric transmission for linearly polarized electromagnetic radiation," Opt. Express, Vol. 19, No. 9, 8347-8356, 2011.
doi:10.1364/OE.19.008347

13. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, No. 21, 213905, 2012.
doi:10.1103/PhysRevLett.108.213905

14. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, No. 19, 195131, 2012.
doi:10.1103/PhysRevB.85.195131

15. Cheng, Y., Y. Nie, X. Wang, and R. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys. A, Vol. 111, No. 1, 209-215, 2013.
doi:10.1007/s00339-013-7546-1

16. Shi, J. H., Z. Zhu, H. F. Ma, and W. X. Jiang, "Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial," Journal of Applied Physics, Vol. 112, No. 7, 073522, 2012.
doi:10.1063/1.4757961

17. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.
doi:10.2528/PIER13050601

18. Shi, J., X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, "Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 102, No. 19, 191905, 2013.
doi:10.1063/1.4805075

19. Shi, J. H., H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, "Broadband chirality and asymmetric transmission in ultrathin 90◦-twisted Babinet-inverted metasurfaces," Phys. Rev. B, Vol. 89, No. 16, 165128, 2014.
doi:10.1103/PhysRevB.89.165128

20. Pfeiffer, C., C. Zhang, V. Ray, L. J. Guo, and A. Grbic, "High performance bianisotropic metasurfaces: Asymmetric transmission of light," Phys. Rev. Lett., Vol. 113, No. 2, 023902, 2014.
doi:10.1103/PhysRevLett.113.023902

21. Liu, D. Y., M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, "Enhanced asymmetric transmission due to Fabry-Perot-like cavity," Opt. Express, Vol. 22, No. 10, 11707-11712, 2014.
doi:10.1364/OE.22.011707

22. Song, K., Y. H. Liu, C. R. Luo, and X. P. Zhao, "High-efficiency broadband and multiband crosspolarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, No. 50, 505104, 2014.
doi:10.1088/0022-3727/47/50/505104

23. Liu, D. J., Z. Y. Xiao, and Z. H. Wang, "Multi-band asymmetric transmission and 90◦ polarization rotator based on bi-Layered metasurface with F-shaped structure," Plasmonics, 2016, DOI: 10.1007/s11468-016-0284-4.

24. Menzel, C., C. Rockstuhl, and F. Lederer, "An advanced Jones calculus for the classification of periodic metamaterials," Phys. Rev. A, Vol. 82, No. 5, 053811, 2010.
doi:10.1103/PhysRevA.82.053811

25. Mutlu, M. and E. Ozbay, "A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, No. 5, 051909, 2012.
doi:10.1063/1.3682591

26. Born, M., E. Wolf, and A. B. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Cambridge University, 1999.
doi:10.1017/CBO9781139644181

27. Ji, R., S. W. Wang, X. Liu, and W. Lu, "Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities," Nanoscale, Vol. 8, No. 15, 8189-8194, 2016.
doi:10.1039/C6NR00058D


© Copyright 2010 EMW Publishing. All Rights Reserved