PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 73 > pp. 145-156

SLOT LOADED COMPACT MICROSTRIP PATCH ANTENNA FOR DUAL BAND OPERATION

By A. Roy, S. Bhunia, D. C. Sarkar, and P. P. Sarkar

Full Article PDF (853 KB)

Abstract:
A novel design of a compact microstrip patch antenna using meandering technique is proposed in this paper where the designed antenna seems to behave as a microstrip patch loaded with conducting strips. A rectangular microstrip patch antenna with addition of conducting strip radiates at much lower frequency than a conventional rectangular microstrip antenna, due to increase of resonant length, but it also causes the increase in total size of the antenna. In this article, the resonant frequency has been lowered significantly by loading a regular rectangular microstrip patch antenna with rectangular slot in a proper position in such a way that the whole structure looks like a strip loaded radiator. About 86.5% size reduction has been achieved experimentally with very good agreement of simulated and measured results. The equivalent circuit and approximate resonant frequency calculation have been discussed in this paper.

Citation:
A. Roy, S. Bhunia, D. C. Sarkar, and P. P. Sarkar, "Slot Loaded Compact Microstrip Patch Antenna for Dual Band Operation," Progress In Electromagnetics Research C, Vol. 73, 145-156, 2017.
doi:10.2528/PIERC17020903

References:
1. Wong, K.-L., Planer Antennas for Wireless Communications, John Wiley & Sons Ltd, Hoboken, New Jersey, 2003.

2. Chen, Z. N., Antennas for Portable Devices, John Wiley & Sons Ltd, West Sussex, England, 2007.
doi:10.1002/9780470319642

3. Bhunia, S., D. Sarkar, S. Biswas, P. P. Sarkar, B. Gupta, and K. Yasumoto, "Reduced size small dual and multi-frequency microstrip antenna," Microwave and Optical Technology Letters, Vol. 50, No. 4, 961-965, Apr. 2008.
doi:10.1002/mop.23255

4. Bhunia, S. and P. P. Sarkar, "Reduced sized dual frequency microstrip antenna," Indian J. Phys., Vol. 83, No. 10, 1457-1461, 2009.
doi:10.1007/s12648-009-0132-x

5. Chakraborty, U., A. Kundu, S. K. Chowdhury, and A. K. Bhattacharjee, "Compact dualband microstrip antenna for IEEE 802.11a WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 407-410, 2014.
doi:10.1109/LAWP.2014.2307005

6. Das, S., P. P. Sarkar, and S. K. Chowdhury, "Investigations on miniaturized multifrequency microstrip patch antennas for wireless communication applications," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 9, 1145-1162, 2013.
doi:10.1080/09205071.2013.802656

7. Sarkar, S., A. Das Majumdar, S. Mondal, S. Biswas, D. Sarkar, and P. P. Sarkar, "Miniaturization of rectangular microstrip patch antenna using optimized single-slotted ground plane," Microwave and Optical Technology Letters, Vol. 53, No. 1, 111-115, Jan. 2011.
doi:10.1002/mop.25661

8. Das, S., P. Chowdhury, A. Biswas, P. P. Sarkar, and S. K. Chowdhury, "Analysis of a miniaturized multiresonant wideband slotted microstrip antenna with modified ground plane," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 60-63, 2015.
doi:10.1109/LAWP.2014.2354474

9. Liu, W.-C., C.-M. Wu, and Y. Dai, "Design of triple-frequency microstrip-fed monopole antenna using defected ground structure," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2457-2463, Jul. 2011.
doi:10.1109/TAP.2011.2152315

10. Ren, X., S. Gao, and Y. Yin, "Compact tri-band monopole antenna with hybrid strips for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 57, No. 1, 94-99, Jan. 2015.
doi:10.1002/mop.28785

11. Chen, H., X. Yang, Y. Z. Yin, S. T. Fan, and J. J. Wu, "Triband planar monopole antenna with compact radiator for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1440-1443, 2013.
doi:10.1109/LAWP.2013.2287312

12. Yang, M., Z. N. Chen, P. Y. Lau, X. Qing, and X. Yin, "Miniaturized patch antenna with grounded strips," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 843-848, Feb. 2015.
doi:10.1109/TAP.2014.2382668

13. Kim, J.-W., T.-H. Jung, H.-K. Ryu, J.-M. Woo, C.-S. Eun, and D.-K. Lee, "Compact multiband microstrip antenna using inverted-L and T-shaped parasitic elements," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1299-1302, 2013.
doi:10.1109/LAWP.2013.2283796

14. Lu, J. H. and K. L. Wong, "Dual-frequency rectangular microstrip antenna with embedded spur lines and integrated reactive loading," Microwave and Optical Technology Letters, Vol. 21, No. 4, 272-275, May 20, 1999.

15. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

16. Azaro, R., F. De Natale, M. Donelli, E. Zeni, and A. Massa, "Synthesis of a prefractal dualband monopolar antenna for GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 361-364, Article number 9, 2006.

17. Azaro, R., G. Boato, M. Donelli, A. Massa, and E. Zeni, "Design of a prefractal monopolar antenna for 3.4–3.6 GHz Wi-Max band portable devices," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 4, 116-119, 2006.
doi:10.1109/LAWP.2006.872427

18. Azaro, R., F. G. B. De Natale, M. Donelli, A. Massa, and E. Zeni, "Optimized design of a multifunction/multiband antenna for automotive rescue systems," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 392-400, Feb. 2006.
doi:10.1109/TAP.2005.863387

19. Donelli, M., F. Viani, P. Rocca, and A. Massa, "An innovative multiresolution approach for DOA estimation based on a support vector classification," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2279-2292, 2009.
doi:10.1109/TAP.2009.2024485

20. Donelli, M., "Design of broadband metal nanosphere antenna arrays with a hybrid evolutionary algorithm," Optics Letters, Vol. 38, No. 4, 401-403, Feb. 15, 2013.
doi:10.1364/OL.38.000401

21. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2012.

22. Hammerstad, E. O., "Equations for microstrip circuit design," Proc. Fifth European Microwave Conf., 268-272, Sep. 1975.

23. Shivnarayan, S. S. and B. R. Vishvakarma, "Analysis of slot-loaded rectangular microstrip patch antenna," Indian Journal of Radio & Space Physics, Vol. 34, 424-430, Dec. 2005.

24. Yang, F., X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1094-1100, Jul. 2001.
doi:10.1109/8.933489


© Copyright 2010 EMW Publishing. All Rights Reserved