PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 74 > pp. 101-109

WIDEBAND RCS REDUCTION OF VIVALDI ANTENNA BASED ON SUBSTRATE INTEGRATED WAVEGUIDE

By J. Xue, W. Jiang, S.-X. Gong, and S. Zhang

Full Article PDF (2,775 KB)

Abstract:
A novel design for radar cross section (RCS) reduction of a bilateral Vivaldi antenna is presented. The method for RCS reduction is based on the wave-guiding characteristic of the substrate integrated waveguide (SIW) structure, which guides the incident energy to the lateral side of antenna plane. The bistatic RCS is controlled under the premise of reducing the monostatic RCS. Compared with the reference antenna, a significant monostatic RCS reduction is achieved over a wide frequency band ranging from 5 GHz to 12 GHz, and a remarkable monostatic RCS reduction at 7 GHz is as much as 34.73 dB without obvious radiation performance degradation. To verify the proposed strategy, prototypes of the reference and proposed antennas have been fabricated and measured. Good agreements between the simulated and measured results demonstrate that the proposed method preserves the radiation performances well and achieves an outstanding wideband RCS reduction.

Citation:
J. Xue, W. Jiang, S.-X. Gong, and S. Zhang, "Wideband RCS Reduction of Vivaldi Antenna Based on Substrate Integrated Waveguide," Progress In Electromagnetics Research C, Vol. 74, 101-109, 2017.
doi:10.2528/PIERC17021202

References:
1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, IET Digital Library, 2004.

2. Chen, T., W. X. Li, Z. H. Yao, X.-X. He, and X. Wang, "A novel stealth Vivaldi antenna," Proceedings of International Conference on Microwave and Millimeter Wave Technology, 1-4, May 2012.

3. Dikmen, C. M., S. Cimen, and G. Cakir, "Planar octagonal-shaped UWB antenna with reduced radar cross section," IEEE Trans. Antennas and Propag., Vol. 62, No. 6, 2946-2953, Jun. 2014.
doi:10.1109/TAP.2014.2313855

4. Wang, F. W., W. Jiang, T. Hong, H. Xue, S.-X. Gong, and Y.-Q. Zhang, "Radar cross section reduction of wideband antenna with a novel wideband radar absorbing materials," IET Microw. Antennas and Propag., Vol. 8, No. 7, 491-497, May 2014.
doi:10.1049/iet-map.2013.0356

5. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904

6. Turpin, J. P., P. E. Sieber, and D. H.Werner, "Absorbing ground planes for reducing planar antenna radar cross-section based on frequency selective surfaces," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1456-1459, 2013.
doi:10.1109/LAWP.2013.2288682

7. Xu, S. and Y.-M. Xu, "Research on active cancelation stealth technique," Optik-International Journal for Light and Electron Optics, Vol. 125, No. 20, 6219-6222, Oct. 2014.
doi:10.1016/j.ijleo.2014.06.144

8. Singh, H. and R. M. Jha, "Active radar cross section reduction: Theory and applications," Teaching Sociology, Vol. 39, No. 3, 274-289, Mar. 2015.

9. Xiang, Y. C., C. W. Qu, F. Su, and M.-J. Yang, "Active cancellation stealth analysis of warship for LFM radar," Proceedings of the 10th International Conference on Signal Processing, 2109-2112, Oct. 2010.

10. Liu, Y., K. Li, Y. T. Jia, Y.-W. Hao, S.-X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas and Propag., Vol. 64, No. 1, 326-331, Jan. 2016.
doi:10.1109/TAP.2015.2497352

11. Jia, Y. T., Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, "Broadband polarization rotation reflective surfaces and their application on RCS reduction," IEEE Trans. Antennas and Propag., Vol. 64, No. 1, 179-188, Jan. 2016.
doi:10.1109/TAP.2015.2502981

12. Gibson, P. J., "The Vivaldi aerial," Proceedings of the 9th European Microwave Conference, 101-105, Sept. 1979.

13. Schaubert, D. H., S. Kasturi, and A. O. Boryssenko, "Vivaldi antenna arrays for wide bandwidth and electronic scanning," Proceedings of the 2nd European Conference on Antennas and propagation, 1-6, Nov. 2007.

14. Liu, J. F., S.-X. Gong, Y. X. Xu, and X.-L. Zhang, "Study of RCS on the dual-index Vivaldi antenna," Space Electronic Technology, 26-29, 2011.

15. Zhang, G. Q., L.-M. Xu, and A.-X. Chen, "RCS reduction of Vivaldi antenna array using a PSS boundary," Proceedings of the 8th International Symposium on Antenna, Propagation and EM Theory, 345-347, Nov. 2008.

16. Jiang, W., Y.-P. Li, S.-X. Gong, and W. Wang, "Novel UWB Vivaldi antenna with low RCS," Proceedings of Asia-Pacific Microwave Conference, 1405-1407, Nov. 2014.

17. Luo, T. and Z. P. Nie, "RCS reduction of antipodal Vivaldi antenna," Proceedings of Asia-Pacific Microwave Conference, 1-3, Dec. 2015.

18. Jia, Y. T., Y. Liu, Y.-W. Hao, and S.-X. Gong, "Vivaldi antenna with reduced RCS using half-mode substrate integrated waveguide," IET Electron. Lett., Vol. 50, No. 5, 345-346, Feb. 2014.
doi:10.1049/el.2013.3866

19. Jiang, W., J. J. Xue, and L. Yang, "Novel design for RCS reduction of Vivaldi antenna," Proceeding of the 4th Asia-Pacific Conference on Antennas and Propagation, 608-609, Jun. 2015.

20. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wirel. Compon. Lett., Vol. 11, No. 2, 68-70, Feb. 2001.
doi:10.1109/7260.914305

21. Hong, W., B. Liu, Y. Q. Wang, Q.-H. Lai, H.-J. Tang, X.-X. Yin, Y.-D. Dong, Y. Zhang, and K. Wu, "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Proceeding of the 31st International Conference on Infrared Millimeter Waves and the 14th International Conference on Terahertz, 219-219, Sept. 2006.

22. Grigoropoulos, N., B. Sanz-Izquierdo, and P. R. Young, "Substrate integrated folded waveguides (SIFW) and filters," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 12, 829-831, Dec. 2005.
doi:10.1109/LMWC.2005.860027

23. Coq, M. L., E. Rius, J. F. Favennec, C. Quendo, B. Potelon, L. Estagerie, P. Moroni, B. Bonnet, and A. E. Mostrah, "Miniaturized C-band SIW filters using high-permittivity ceramic substrates," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 5, No. 5, 620-626, May 2015.
doi:10.1109/TCPMT.2015.2422613

24. Pourghorban Saghati, A., A. Pourghorban Saghati, and K. Entesari, "Ultra-miniature SIW cavity resonators and filters," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 12, 1-12, Dec. 2015.
doi:10.1109/TMTT.2015.2494023

25. Tan, L. R., R. X. Wu, and P. Yin, "Magnetically reconfigurable SIW antenna with tunable frequencies and polarizations," EEE Trans. Antennas and Propag., Vol. 63, No. 6, 2772-2776, Jun. 2015.
doi:10.1109/TAP.2015.2414446

26. Guan, D. F., C. Ding, Z.-P. Qian, Y.-S. Zhang, W.-Q. Cao, and E. Dutkiewicz, "An SIW based large-scale corporate-feed array antenna," IEEE Trans. Antennas and Propag., Vol. 63, No. 7, 2969-2976, Jul. 2015.
doi:10.1109/TAP.2015.2430369

27. Li, G. L., K. J. Song, F. Zhang, and Y. Zhu, "Novel four-way multilayer SIW power divider with slot coupling structure," EEE Microw. Wirel. Compon. Lett., Vol. 25, No. 12, 799-801, Dec. 2015.
doi:10.1109/LMWC.2015.2496779

28. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 66-73, Jan. 2005.
doi:10.1109/TMTT.2004.839303


© Copyright 2010 EMW Publishing. All Rights Reserved