PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 75 > pp. 181-191

A CODING METASURFACE WITH PROPERTIES OF ABSORPTION AND DIFFUSION FOR RCS REDUCTION

By T. Han, X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao

Full Article PDF (1,124 KB)

Abstract:
A low-radar cross section (RCS) coding metasurface (MS) with properties of absorption and diffusion for both normal and oblique incidences is proposed in this paper. The coding MS is composed of a miniaturized perfect metamaterial absorber (PMA) and a wideband artificial magnetic conductor (AMC) in a shared aperture. In addition, to avoid strong scattering energy appearing at specific directions, genetic algorithm (GA) is adopted to search the optimal layout of the two MS elements. Simulated and experimental results confirm the properties of coding MS and indicate the 6-dB RCS reduction bands under TE- and TM-polarized normal incident that waves are 6.28GHz-9.16GHz and 6.33GHz-9.41GHz, respectively.

Citation:
T. Han, X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, "A Coding Metasurface with Properties of Absorption and Diffusion for RCS Reduction," Progress In Electromagnetics Research C, Vol. 75, 181-191, 2017.
doi:10.2528/PIERC17041201

References:
1. Minyeong, Y., H. K. Kim, and S. Lim, "Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology," IEEE Antennas Wireless Propag. Lett., Vol. 15, 414-417, 2016.
doi:10.1109/LAWP.2015.2448720

2. Liu, Y., K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2016.
doi:10.1109/TAP.2015.2497352

3. Han, T., X. Y. Cao, J. Gao, and Y. Zhao, "Design of shared aperture metasurface and its application on improving radiation and scattering performance of the waveguide slot antenna," Journal of Air Force Engineering University, Vol. 18, No. 3, 50-56, 2017 (in Chinese).

4. Li, H. P., G. M. Wang, J. G. Liang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011

5. Yang, W. C., K. W. Tam, W. W. Choi, W. Q. Che, and H. T. Hui, "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6206-6216, 2014.
doi:10.1109/TAP.2014.2361130

6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

7. Ustun, K. and G. T. Sayan, "Wideband long wave infrared metamaterial absorbers based on silicon nitride," J. Appl. Phys., Vol. 120, 203101, 2016.
doi:10.1063/1.4968014

8. Zuo, W. Q., Y. Yang, X. X. He, D. W. Zhan, and Q. F. Zhang, "A miniaturized metamaterial absorber for ultrahigh-frequency RFID system," IEEE Antennas Wireless Propag. Lett., Vol. 16, 329-332, 2017.
doi:10.1109/LAWP.2016.2574885

9. Ni, X. J., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband Light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012.
doi:10.1126/science.1214686

10. Kandasamy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "Low-RCS and polarizationreconfigurable antenna using cross-slot-based metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1638-1641, 2015.
doi:10.1109/LAWP.2015.2415585

11. Chen, W. G., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2636-2645, 2015.
doi:10.1109/TAP.2015.2414440

12. Song, Y. C., J. Ding, C. J. Guo, Y. H. Ren, and J. K. Zhang, "Ultra-broadband backscatter radar cross section reduction based on polarization-insensitive metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 329-331, 2016.
doi:10.1109/LAWP.2015.2443853

13. Paquay, M., J. C. Iriarte, and Ederra, "Thin AMC structure for radar cross-section reduction," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306

14. Galarregui, J. C. I., A. T. Pereda, J. L. M. Falc´on, I. Ederra, R. Gonzalo, and P. Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6136-6143, 2013.
doi:10.1109/TAP.2013.2282915

15. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218, 2014.
doi:10.1038/lsa.2014.99

16. Zhao, Y., et al., "Broadband diffusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm," Scientific Reports, Vol. 6, 23896, 2016.
doi:10.1038/srep23896

17. Yan, X., et al., "Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface," Optics Express, Vol. 23, No. 22, 29128-29137, 2015.
doi:10.1364/OE.23.029128

18. Zhang, H., Y. Lu, J. X. Su, Z. R. Li, J. B. Liu, and Y. Q. Yang, "Coding diffusion metasurface for ultra-wideband RCS reduction," Electronics Letters, Vol. 53, No. 3, 187-189, 2017.
doi:10.1049/el.2016.3956

19. Zhao, J., et al., "Controlling the bandwidth of terahertz low-scattering metasurfaces," Adv. Optical Mater., Vol. 4, No. 11, 1773-1779, 2016.
doi:10.1002/adom.201600202

20. Li, W. Q., X. Y. Gao, J. Cao, Q. Yang, Y. Zhao, Z. Zhang, and C. H. Zhang, "A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics," Acta Phys. Sin., Vol. 63, No. 12, 124101, 2014 (in Chinese).

21. Sievenpiper, D., L. J. Zhang, R. F. J. Broas, N. G. Alex’opolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

22. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Trans. Antennas Propag., Vol. 51, 2296-2303, 2003.
doi:10.1109/TAP.2003.816352

23. Wang, K., J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, "Broadband and broad-angle lowscattering metasurface based on hybrid optimization algorithm," Scientific Reports, Vol. 4, 5935, 2014.


© Copyright 2010 EMW Publishing. All Rights Reserved