Vol. 77
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-21
Electromagnetic Spin Current Density of Surface Plasmon Polaritons
By
Progress In Electromagnetics Research C, Vol. 77, 57-68, 2017
Abstract
A subject of plasmonic spinphotonics is developed for surface plasmon polaritons (SPPs). Since an electromagnetic field is a vectorial field, it has spinning angular momentum, and thus spin current is one of its degrees of freedom. A spin current density tensor has 24 independent components because of its antisymmetry in coordinate indices. By using the law of conservation of electromagnetic angular momentum (i.e., orbital angular momentum plus spinning angular momentum), the electromagnetic spin current density tensor is derived, and its characteristics are indicated. Since surface plasmon polaritons can exhibit various intriguing optical and electromagnetic effects and have many practical applications, we consider a new potential effect relevant to spin current transfer. The electromagnetic spin current density tensor and its intensity profile are analyzed for SPPs sustained on a metal-dielectric interface. The plasmonic spin on a metal ring and a straight thin metal belt is calculated, and based on this, a nanomechanical effect caused by plasmonic spin current transfer is suggested. It is expected that such a nontrivial nanomechanical effect will be useful in the design of new nanophotonic devices aiming at sensitive, accurate measurement techniques.
Citation
Shiyao Chong, and Katus Maski, "Electromagnetic Spin Current Density of Surface Plasmon Polaritons," Progress In Electromagnetics Research C, Vol. 77, 57-68, 2017.
doi:10.2528/PIERC17061901
References

1. Ritchie, R. H., "Plasma losses by fast electrons in thin films," Phys. Rev., Vol. 1, No. 5, 874-881, 1957.
doi:10.1103/PhysRev.106.874

2. Vieu, C., F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, "Electron beam lithography: resolution limits and applications," Appl. Surf. Sci., Vol. 164, No. 4, 111-117, 2000.
doi:10.1016/S0169-4332(00)00352-4

3. Chen, Y., D. M. Bagnall, H. Koh, et al. "Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization," J. Appl. Phys., Vol. 84, No. 7, 3912-3918, 1998.
doi:10.1063/1.368595

4. Giannuzzi, L. A. and F. A. Stevie, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice, Springer, Berlin, 2005.
doi:10.1007/b101190

5. Zayats, A. V., I. I. Smolyaninov, and A. A.Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep., Vol. 408, No. 3, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001

6. Pitarke, J. M., V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys., Vol. 70, No. 1, 1-87, 2007.
doi:10.1088/0034-4885/70/1/R01

7. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
doi:10.1126/science.1108759

8. Fleischmann, M., P. J. Hendra, and A. J. Mcquillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett., Vol. 26, No. 2, 163-166, 1974.
doi:10.1016/0009-2614(74)85388-1

9. Jeanmaire, D. L. and R. P. V. Duyne, "Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. Interfac., Vol. 84, No. 1, 1-20, 1977.
doi:10.1016/S0022-0728(77)80224-6

10. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B, Vol. 54, No. 2, 3-15, 1999.
doi:10.1016/S0925-4005(98)00321-9

11. Frey, H. G., S. Witt, K. Felderer, and R. Guckenberger, "High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip," Phys. Rev. Lett., Vol. 93, No. 20, 200801, 2004.
doi:10.1103/PhysRevLett.93.200801

12. Tang, L., S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Lygagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nature Photon., Vol. 2, No. 4, 226-229, 2008.
doi:10.1038/nphoton.2008.30

13. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Vol. 440, No. 7083, 508, 2006.
doi:10.1038/nature04594

14. Gu, B. Y., "Surface plasmon subwavelength optics: principles and novel effects," Physics (WuLi, Beijing), Vol. 36, No. 4, 280-287, 2007.

15. Maekawa, S., H. Adachi, K. Uchida, J. I. Ieda, and E. Saitoh, "Spin current: experimental and theoretical aspects," J. Phys. Soc. Jpn., Vol. 82, No. 10, 102002, 2013.
doi:10.7566/JPSJ.82.102002

16. Shen, S. Q., "Spintronics and spin current," Physics (WuLi, Beijing), Vol. 37, No. 1, 16-23, 2008.

17. Maier, S. A., Plasmonics: Fundamentals and Applications, Chapt. 2 and 5, Springer, Berlin, 2007.
doi:10.1007/0-387-37825-1

18. Bjorken, J. D. and S. D. Drell, Relativistic Quantum Fields, Chapt. 14, Mcgraw-Hill Companies, Inc., New York, 1965.

19. Guidry, M., Gauge Field Theories: An Introduction with Applications, Wiley, New York, 1992.

20. Injeyan, H. and G. D. Goodno, High-Power Laser Handbook, Chapt. 15, 445, McGraw-Hill Companies, Inc., New York, 2011.

21. Shen, J. Q., M. Norgren, and S. He, "Negative refraction and quantum vacuum effects in gyroelectric chiral medium and anisotropic magnetoelectric material," Ann. Phys., Vol. 15, No. 12, 894-910, 2006.
doi:10.1002/andp.200510219

22. Shen, J. Q., "Momentum transfer between quantum vacuum and anisotropic medium," Prog. Theor. Phys. (Japan), Vol. 119, No. 3, 351-360, 2008.
doi:10.1143/PTP.119.351

23. Shapere, A. and F. Wilczek, "Classical time crystals," Phys. Rev. Lett., Vol. 109, No. 16, 160402, 2012.
doi:10.1103/PhysRevLett.109.160402

24. Zhao, L., "Strange Lagrangian systems and statistical mechanics," J. Phys. A, Vol. 46, No. 46, 493-494, 2013.

25. Chernodub, M. N., "Permanently rotating devices: extracting rotation from quantum vacuum fluctuations,", arXiv: 1203.6588 [quant-ph].