PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 86 > pp. 137-152

CORRELATION ANALYSIS OF TWO SKEWED DIPOLES USING EMBEDDED BEAM PATTERNS

By J.-H. Han and N.-H. Myung

Full Article PDF (1,681 KB)

Abstract:
In this paper, the correlation coefficients of skewed dipole arrays for antenna diversity are analyzed theoretically for each polarization characteristic and in various propagation environments. The correlation is not simply increased by two closely located antennas with different polarization characteristics and it is not decreased by increased antenna distance. This result is interpreted from the correlation analysis of two skewed dipoles with different polarization characteristics. The embedded beam patterns of the two skewed dipoles are calculated using the mutual impedances derived using the effective length vector (ELV) method; then, the mutually coupled correlation coefficients for θ, ϕ, and total polarizations are effectively derived. The correlations are also analyzed for various realistic propagation environments using statistical channel models with angular density functions and cross polarization discriminations (XPDs). Finally, this paper provides an effective correlation analysis for two dipoles and proposes optimal geometries for the two skewed dipoles in various propagation environments for each polarization characteristic and with environmental variables.

Citation:
J.-H. Han and N.-H. Myung, "Correlation Analysis of Two Skewed Dipoles Using Embedded Beam Patterns," Progress In Electromagnetics Research C, Vol. 86, 137-152, 2018.
doi:10.2528/PIERC18042604

References:
1. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 36, No. 4, 149-172, Nov. 1987.
doi:10.1109/T-VT.1987.24115

2. Vaughan, R. G., "Polarization diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 39, No. 3, 177-186, Aug. 1990.
doi:10.1109/25.130998

3. Dietrich, Jr., C. B., K. Dietze, J. R. Nealy, and W. L. Stutzman, "Spatial, polarization, and pattern diversity for wireless handheld terminals," IEEE Trans. Antennas Propagat., Vol. 49, No. 9, 1271-1281, Sep. 2001.
doi:10.1109/8.947018

4. Clarke, R. H., "A statistical theory of mobile radio reception," Bell Syst. Tech. J., Vol. 47, No. 6, 957-1000, Jul.-Aug. 1968.
doi:10.1002/j.1538-7305.1968.tb00069.x

5. Tse, D. and P. Viswanath, Fundamentals of Wireless Communication, Cambridge Univ. Press, 2005.
doi:10.1017/CBO9780511807213

6. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703

7. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
doi:10.2528/PIERB15090103

8. Andrews, R. A., P. P. Mitra, and R. de Carvalho, "Tripling the capacity of wireless communications using electromagnetic polarization," Nature, Vol. 409, 316-318, 2001.
doi:10.1038/35053015

9. Derneryd, A. and G. Kristensson, "Signal correlation including antenna coupling," Electron. Lett., Vol. 40, No. 3, 157-159, Feb. 2004.
doi:10.1049/el:20040140

10. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description ," Electron. Lett., Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495

11. Valenzuela-Valdés, J. F., M. A. García-Fernández, A. M. Martínez-González, and D. Sánchez-Hernández, "The role of polarization diversity for MIMO systems under Rayleigh-fading environments," IEEE Antennas Wireless Propagt. Lett., Vol. 5, 534-536, 2006.
doi:10.1109/LAWP.2006.889552

12. Valenzuela-Valdés, J. F., A. M. Martínez-González, and D. Sánchez-Hernández, "Estimating combined correlation functions for dipoles in Rayleigh-fading scenarios," IEEE Antennas Wireless Propagat. Lett., Vol. 6, 349-352, 2007.
doi:10.1109/LAWP.2007.900962

13. Valenzuela-Valdés, J. F., M. A. García-Fernández, A. M. Martínez-González, and D. Sánchez-Hernández, "Evaluation of true polarization diversity for MIMO systems," IEEE Trans. Antennas Propagat., Vol. 57, No. 9, 2746-2755, Sep. 2009.
doi:10.1109/TAP.2009.2027042

14. Taga, T., "Analysis for mean effective gain in mobile antennas in land mobile radio environments," IEEE Trans. Veh. Technol., Vol. 39, No. 2, 117-131, May 1990.
doi:10.1109/25.54228

15. Vaughan, R. G., "Switched parasitic elements for antenna diversity," IEEE Trans. Antennas Propagat., Vol. 47, No. 2, 399-405, Feb. 1999.
doi:10.1109/8.761082

16. Boyle, K., "Radiation patterns and correlation of closely spaced linear antennas," IEEE Trans. Antennas Propagat., Vol. 50, No. 8, 1162-1165, Aug. 2002.
doi:10.1109/TAP.2002.801367

17. Hui, H. T., W. T. O. Yong, and K. B. Toh, "Signal correlation between two normal-mode helical antennas for diversity reception in a multipath environment," IEEE Trans. Antennas Propagat., Vol. 52, No. 2, 572-577, Feb. 2004.
doi:10.1109/TAP.2004.823950

18. Hallbjörner, P., "The significant of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas," IEEE Antennas Wireless Propagat. Lett., Vol. 4, 97-99, 2005.
doi:10.1109/LAWP.2005.845913

19. Andersen, J. B. and B. K. Lau, "On closely coupled dipoles in a random field," IEEE Antennas Wireless Propagat. Lett., Vol. 5, 73-75, 2006.
doi:10.1109/LAWP.2006.870365

20. Raj, J. S. K., S. P. Arokiasamy, N. Vikram, and J. Schoebel, "Spatial correlation and MIMO capacity of uniform rectangular dipole arrays," IEEE Antennas Wireless Propagat. Lett., Vol. 7, 97-100, 2008.
doi:10.1109/LAWP.2008.919344

21. Hsieh, P. C. and F. C. Chen, "A new spatial correlation formulation of arbitrary AoA scenarios," IEEE Antennas Wireless Propagat. Lett., Vol. 8, 398-401, 2008.

22. King, H. E., "Mutual impedance of unequal length antennas in echelon," IRE Trans. Antennas Propagat., Vol. 5, No. 3, 306-313, Jul. 1957.
doi:10.1109/TAP.1957.1144509

23. Chang, V. W. H. and R. W. P. King, "On two arbitrarily located identical parallel antennas," IEEE Trans. Antennas Propagat., Vol. 16, No. 3, 309-317, May 1968.
doi:10.1109/TAP.1968.1139183

24. Janaswamy, R., "A simplified expression for the self/mutual impedance between coplanar and parallel surface monopoles," IEEE Trans. Antennas Propagat., Vol. 35, No. 10, 1174-1176, Oct. 1987.
doi:10.1109/TAP.1987.1143988

25. Köksal, A. and J. F. Kauffman, "Mutual impedance of parallel and perpendicular coplanar surface monopoles," IEEE Trans. Antennas Propagat., Vol. 39, No. 8, 1251-1256, Aug. 1991.
doi:10.1109/8.97367

26. King, R. W. P., C. W. Harrison, and Jr, "The receiving antenna," Proc. IRE, Vol. 32, 18-49, Jan. 1944.
doi:10.1109/JRPROC.1944.232736

27. Richmond, J. H. and N. H. Geary, "Mutual impedance between coplanar-skew dipoles," IEEE Trans. Antennas Propagat., Vol. 18, 414-416, May 1970.
doi:10.1109/TAP.1970.1139705

28. Richmond, J. H., "Coupled linear antennas with skew orientation," IEEE Trans. Antennas Propagat., Vol. 18, 694-696, Mar. 1970.
doi:10.1109/TAP.1970.1139751

29. Han, J. H. and N. H. Myung, "Exact and simple calculation of mutual impedance for coplanar-skew dipoles," Electron. Lett., Vol. 48, No. 8, 423-425, Apr. 2012.
doi:10.1049/el.2012.0420

30. Richmond, J. H. and N. H. Geary, "Mutual impedance of nonplanar-skew sinusoidal dipoles," IEEE Trans. Antennas Propagat., Vol. 23, 412-414, May 1975.
doi:10.1109/TAP.1975.1141083

31. Chuang, C. W., J. H. Richmond, N. Wang, and P. H. Pathak, "New expressions for mutual impedance of nonplanar-skew sinusoidal monopoles," IEEE Trans. Antennas Propagat., Vol. 38, No. 2, 275-276, Feb. 1990.
doi:10.1109/8.45132

32. Liu, K., C. A. Balanis, and G. C. Barber, "Exact mutual impedance between sinusoidal electric and magnetic dipoles," IEEE Trans. Antennas Propagat., Vol. 39, No. 5, 684-686, May 1991.
doi:10.1109/8.81503

33. Schmidt, K. E., "Simplified mutual impedance of nonplanar skew dipoles," IEEE Trans. Antennas Propagat., Vol. 44, No. 9, 1298-1299, Sep. 1996.
doi:10.1109/8.535390

34. Han, J. H., W. Y. Song, K. S. Oh, and N. H. Myung, "Simple formula and its exact analytic solution of mutual impedance for nonplanar skew dipoles," Progress In Electromagnetics Research, Vol. 132, 551-570, 2012.
doi:10.2528/PIER12083002

35. Svantesson, T. and A. Ranheim, "Mutual coupling effects on the capacity of multielement antenna systems," Proc. IEEE Int. Conf., Acoustics, Speech, and Signal Processing, 2485-2488, 2001.

36. Kildal, P. S. and K. Rosengren, "Electromagnetic analysis of effective and apparent diversity gain of two parallel dipoles," IEEE Antennas Wireless Propagat. Lett., Vol. 2, 9-13, 2003.
doi:10.1109/LAWP.2003.810768

37. Rosengren, K. and P. S. Kildal, "Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: Theory, simulation and measurement in reverberation chamber," Proc. Inst. Elect. Eng. on Microwaves, Antennas and Propagation, Vol. 152, No. 1, 7-16, 2005.
doi:10.1049/ip-map:20045031

38. Balanis, C. A., Antenna Theory, Analysis, and Design, Wiley, 1982.

39. Li, X. and Z. P. Nie, "Mutual coupling effects on the performance of MIMO wireless channels," IEEE Antennas Wireless Propagat. Lett., Vol. 3, 344-347, 2004.

40. Loyka, S. L., "Channel capacity of two antenna BLAST architecture," Electron. Lett., Vol. 35, No. 17, 1421-1422, Aug. 1999.
doi:10.1049/el:19990987

41. Kalliola, K., K. Sulonen, H. Laitinen, O. Kivekäs, J. Krogerus, and P. Vainikainen, "Angular power distribution and mean effective gain of mobile antenna in different propagation environments," IEEE Trans. Veh. Technol., Vol. 51, No. 5, 823-838, Sep. 2002.
doi:10.1109/TVT.2002.800639

42. Ando, A., T. Taga, A. Kondo, K. Kagoshima, and S. Kubota, "Mean effective gain of mobile antennas in line-of-sight street microcells with low base station antennas," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3552-3565, Nov. 2008.
doi:10.1109/TAP.2008.2005438


© Copyright 2010 EMW Publishing. All Rights Reserved