PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 86 > pp. 111-122

AN ULTRA-WIDEBAND MODIFIED VIVALDI ANTENNA APPLIED TO THROUGH THE GROUND AND WALL IMAGING

By Z. Tahar, X. Derobert, and M. Benslama

Full Article PDF (784 KB)

Abstract:
In this paper, we are interested in the design of a new Ultra-Wideband (UWB) directional Vivaldi antenna with narrow beam, in the frequency range of 1.17 to 4.75 GHz. The simulation of the designed antenna is carried out on Computer Simulation Technology Microwave Studio (CST-MWS). The mutual coupling effect reduction is considered. The designed antenna is tested for Ground Penetrating Radar (GPR) and Through the Wall applications. The emitted waveform is a Stepped Frequency Continuous Wave (SFCW) signal, generated by a Vector Network Analyser (VNA). The acquired raw data are focused by using back projection algorithm.

Citation:
Z. Tahar, X. Derobert, and M. Benslama, "An Ultra-Wideband Modified Vivaldi Antenna Applied to through the Ground and Wall Imaging," Progress In Electromagnetics Research C, Vol. 86, 111-122, 2018.
doi:10.2528/PIERC18051502

References:
1. Elsheakh, D. M. N., N. A. Eltresy, and E. A. Abdallah, "Ultra wide bandwidth high gain Vivaldi antenna for wireless communications," Progress In Electromagnetics Research Letters, Vol. 69, 105-111, 2017.
doi:10.2528/PIERL17060507

2. He, S. H., W. Shan, C. Fan, Z. C. Mo, F. H. Yang, and J. H. Chen, "An improved Vivaldi antenna for vehicular wireless communication system," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1505-1508, 2014.
doi:10.1109/LAWP.2014.2343215

3. Pandey, G. K., H. S. Singh, P. K. Bharti, A. Pandey, and M. K. Meshram, "High gain Vivaldi antenna for radar and microwave imaging applications," International Journal of Signal Processing Systems, Vol. 3, No. 1, Jun. 2015.

4. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844

5. Danjuma, I. M., F. Abdussalam, B. Muhammad, E. N. Eya, R. Abd-Alhameed, and J. M. Noras, "Design of a taper slot low profile Vivaldi antenna for ultra-wideband microwave breast imaging applications," Journal of Multidisciplinary Engineering Science and Technology (JMEST), Vol. 4, No. 8, ISSN: 2458-9403, Aug. 2017.

6. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601

7. Liu, X., M. Serhir, A. Kameni, M. Lambert, and L. Pichon, "Buried targets detection from synthetic and measured B-scan ground penetrating radar data," 11th European Conference on Antennas and Propagation (EUCAP), 1726-1730, 2017.

8. Ali, J., N. Abdullah, M. Y. Ismail, P. Arias, E. Mohd, and S. Mohd Sara, "Ultra-wideband antenna design for GPR applications: A review," International Journal of Advanced Computer Science and Applications, Vol. 8, No. 7, 2017.
doi:10.14569/IJACSA.2017.080753

9. Marpaung, D. H. N. and Y. Lu, "A comparative study of migration algorithms for UWB GPR images in SISO-SAR and MIMO-array configurations," 15th Int. Radar Symposium (IRS 2014), 1-4, Gdanskpp, 2014.

10. Dérobert, X., C. Fauchard, Ph. Cˆote, E. Le Brusq, E. Guillanton, J. Y. Dauvignac, and Ch. Pichot, "Step frequency radar applied on thin road layers," J. Appl. Geophys., Vol. 47, 317-325, 2001.
doi:10.1016/S0926-9851(01)00075-1

11. Guan, B., A. Ihamouten, X. D´erobert, D. Guilbert, S. Lambot, and G. Villain, "Near-field full-waveform inversion of ground-penetrating radar data to monitor the water front in limestone," IEEE Journal of Selected Topics in Applied Earth Obsevations and Remote Sensing, Aug. 9, 2017.

12. Lambot, S. and F. Andre, "Full-wave modeling of near-field radar data for planar layered media reconstruction," IEEE Trans. Geosci. & Remote Sens., Vol. 52, 2295-2303, 2014.
doi:10.1109/TGRS.2013.2259243

13. Gibson, P. J., "The Vivaldi aerial," 9th European Microwave Conference, 101-105, 1979.

14. Lewis, L. R., M. Fasset, and J. Hunt, "A broad-band strip line array element," Proc. IEEE Int. Symp. Antennas Propagat. Dig., 335-337, 1974.

15. Molaei, A., M. Kaboli, S. A. Mirtaheri, and S. Abrishamian, "Beamtilting improvement of balanced antipodal Vivaldi antenna using a dielectric lens," Proc. 2nd Iranian Conference on Engineering Electromagnetics, 577-581, Tehran, Iran, 2014.

16. Dhawan, R. and G. Kaur, "Vivaldi antenna simulation on defining parameters, parametric study and results," JCTA, Vol. 9, 5129-5138, 2016.

17. Abbosh, A. M., "Directive antenna for ultra wide band medical imaging systems," International Journal of Antennas and Propagation, Vol. 2008, 6 pages, Article ID 854012, 2008.

18. Liu, X., M. Serhir, A. Kameni, M. Lambert, and L. Pichon, "Buried targets detection from synthetic and measured B-scan ground penetrating radar data," 11th European Conference on Antennas and Propagation (EuCAP 2017), Paris, France, Mar. 2017.

19. Mostafa, M. A., M. Samir, K. Hussein, and H. Kamel, "SAR processing for buried objects detection using GPR," Journal of Multidisciplinary Engineering Science and Technology (JMEST), Vol. 3, No. 6, ISSN: 2458-9403, Jun. 2016.

20. Marpaung, D. H. N. and Y. Lu, "A comparative study of migration algorithms for UWB GPR images in SISO-SAR and MIMO-array configurations," 15th Int. Radar Symposium (IRS 2014), 1-4, Gdanskpp, 2014.

21. Perdana, M. Y., T. Hariyadi, and Y. Wahyu, "Design of Vivaldi microstrip antenna for ultra-wideband radar applications," IOP Conf. Series: Materials Science and Engineering, Vol. 180, 2017.

22. Ma, K., Z. Zhao, J. Wu, S. M. Ellis, and Z.-P. Nie, "A printed Vivaldi antenna with improved radiation patterns by using two pairs of eye-shaped slots for UWB," Progress In Electromagnetics Research, Vol. 148, 63-71, 2014.
doi:10.2528/PIER14043003

23. Frenando, I., R. M. Pereira, H. Lorenzo, P. Arias, and A. Novo, "Resolution of GPR bowtie antennas: An experimental," Journal of Applied Geophysics, 367-373, 2009.

24. Wu, Y., J. P. Linnartz, J. W. M. Bergmans, and S. Attallah, "Effects of antenna mutual coupling on the performance of MIMO systems," Symposium on Information Theory in the Benelux, May 2008.


© Copyright 2010 EMW Publishing. All Rights Reserved