PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 86 > pp. 97-110

NEW STABILIZATION TECHNIQUE TO PREVENT PARAMETRIC OSCILLATIONS IN A 35 W C-BAND ALGAN/GAN MMIC HIGH POWER AMPLIFIER

By M. Gholami and M. C. E. Yagoub

Full Article PDF (993 KB)

Abstract:
In this paper, a novel stabilization scheme to prevent parametric oscillations in power amplifiers is presented. Based on a new oscillation detection approach, the inductive degeneration technique was used, for the first time, to successfully stabilize a high-power amplifier and prevent parametric oscillations. A 0.15 um AlGaN/GaN Microwave Monolithic Integrated Circuit high power amplifier operating at 5.8 GHz with 10% fractional bandwidth was designed and successfully stabilized using this approach. The proposed (4.7 x 3.7) mm2 three-stage amplifier achieves a saturated output power of 35 W with 29% power added efficiency and a large-signal gain of 26 dB.

Citation:
M. Gholami and M. C. E. Yagoub, "New Stabilization Technique to Prevent Parametric Oscillations in a 35 W C-Band AlGaN /GaN MMIC High Power Amplifier," Progress In Electromagnetics Research C, Vol. 86, 97-110, 2018.
doi:10.2528/PIERC18062601

References:
1. Gholami, M., R. E. Amaya, and M. C. E. Yagoub, "Low-loss compact power combiner for solid state power amplifiers with high reliability," IET, Microw., Antennas & Propag., Vol. 10, No. 3, 310-317, 2015.
doi:10.1049/iet-map.2015.0403

2. Giofry, R., P. Colantonio, L. Gonzalez, L. Cabria, and F. De Arriba, "A 300W complete GaN solid state power amplifier for positioning system satellite payloads," Microw. Symp. Digest, IEEE MTT-S Int., 1-3, 2016.

3. Golio, M., RF and Microwave Semiconductor Handbook, Ch. 9, CRC, Boca Raton, 2003.

4., , http://www.qorvo.com/applications/defense aerospace/radar.

5., , http://www.wolfspeed.com/cmpa5585025d.

6. Florian, C., R. Cignani, A. Santarelli, and F. Filicori, "Design of 40-W AlGaN/GaN MMIC high power amplifiers for C-band SAR applications," IEEE Trans. Microw. Theory and Tech., Vol. 61, No. 12, 4492-4504, 2013.
doi:10.1109/TMTT.2013.2286109

7. Jeong, J. C., D. P. Jang, and I. B. Yom, "A 40W AlGaN/GaN MMIC high power amplifier for C-band radar applications," IEEE, European Microwave Conference (EuMC), 1126-1129, 2014.

8. Wanum, M. V., A. P. D. Hek, and F. E. V. Vliet, "GaN C-band HPA for phased-array applications," IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-4, 2013.

9. Miwa, S., Y. Kamo, Y. Kittaka, T. Yamasaki, Y. Tsukahara, T. Tanii, M. Kohno, S. Goto, and A. Shima, "A 67% PAE, 100W GaN power amplifier with on-chip harmonic tuning circuits for C-band space applications," Microw. Symp. Digest, IEEE MTT-S Int., 1-4, 2011.

10. Noh, Y. S. and I. B. Yom, "Highly integrated C-band GaN high power amplifier MMIC for phased array applications," IEEE Microw., and Wireless Components Lett., Vol. 25, No. 6, 406-408, 2015.
doi:10.1109/LMWC.2015.2421316

11. Yu, X., H. Sun, Y. Xu, and W. Hong, "C-band 60 W GaN power amplifier MMIC designed with harmonic tuned approach," Electronics Lett., Vol. 52, No. 3, 219-221, 2016.
doi:10.1049/el.2015.3017

12. Friesicke, C., P. Feuersch´ytz, R. Quay, O. Ambacher, and A. F. Jacob, "A 40 dBm AlGaN/GaN HEMT power amplifier MMIC for SatCom applications at K-band," Int. Microw. Symposium (IMS), IEEE MTT-S, 1-4, 2016.

13. Hindle, P., G. Lerude, and R. Mumford, "Get your GaN here: RF GaN foundry survey," Microwave J., Vol. 59, No. 6, 20-34, 2016.

14. Chang, K., V. Nair, and I. J. Bahl, RF and Microwave Circuit and Component Design for Wireless Systems, J. Wiley & Sons, 2002.

15. Dellier, S., R. Gourseyrol, G. Soubercaze-Pun, J. M. Collantes, A. Anakabe, and K. Narendra, "Stability analysis of microwave circuits," IEEE Wireless and Microwave Technology Conf. (WAMICON), 1-5, 2012.

16. Dellier, S., L. Mori, J. M. Collantes, A. Anakabe, and C. Campbell, "Analysis of odd-mode parametric instabilities at fundamental frequency in an X-band MMIC power amplifier," IEEE, Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-4, 2016.

17. Jugo, J., J. Portilla, A. Anakabe, A. Suarez, and J. M. Collantes, "Closed-loop stability analysis of microwave amplifiers," Electronics Lett., Vol. 37, No. 4, 226-228, 2001.
doi:10.1049/el:20010170

18. Collantes, J. M., I. Lizarraga, A. Anakabe, and J. Jugo, "Stability verification of microwave circuits through Floquet multiplier analysis," IEEE Asia-Pacific Circuits and Systems Conf., Vol. 2, 997-1000, 2004.

19. Narendra, K., J. M. Collantes, C. Paoloni, and E. Limiti, "Parametric oscillations in distributed power amplifiers," Electronics Lett., Vol. 45, No. 25, 1325-1326, 2009.
doi:10.1049/el.2009.1794

20. Pozar, D. M., Microwave Engineering, 4th Ed., 2012.

21. Anakabe, A., J. M. Collantes, J. Portilla, S. Mons, and A. Mallet, "Detecting and avoiding odd-mode parametric oscillations in microwave power amplifiers," Int. Journal of RF and Microw. Computer-Aided Engineering, Vol. 15, No. 5, 469-478, 2005.
doi:10.1002/mmce.20112

22. Elad, D., R. Shaulsky, and B. Mezhebovsky, "A novel method for even odd parametric oscillation stability analysis of a microwave power amplifier," Microw. Symp. Digest, IEEE MTT-S Int., 1850-1854, 2006.

23. Anakabe, A., J. M. Collantes, J. Portilla, J. Jugo, A. Mallet, L. Lapierre, and J. P. Fraysse, "Analysis and elimination of parametric oscillations in monolithic power amplifiers," Microw. Symp. Digest, IEEE MTT-S Int., Vol. 3, 2181-2184, 2002.

24. Teeter, D., A. Platzker, and R. Bourque, "A compact network for eliminating parametric oscillations in high power MMIC amplifiers," Microw. Symp. Digest, IEEE MTT-S Int., Vol. 3, 967-970, 1999.

25. Ohtomo, M., "Stability analysis and numerical simulation of multidevice amplifiers," IEEE Trans. Microw. Theory and Tech., Vol. 41, No. 6, 983-991, 1993.
doi:10.1109/22.238513

26. Mons, S., J. C. Nallatamby, R. Quere, P. Savary, and J. Obregon, "A unified approach for the linear and nonlinear stability analysis of microwave circuits using commercially available tools," IEEE Trans. Microw. Theory and Tech., Vol. 47, No. 12, 2403-2409, 1999.
doi:10.1109/22.808987

27. Cappelluti, F., F. L. Traversa, F. Bonani, S. D. Guerrieri, and G. Ghione, "Large-signal stability of symmetric multibranch power amplifiers exploiting Floquet analysis," IEEE Trans. on Microw. Theory and Tech., Vol. 61, No. 4, 1580-1587, 2013.
doi:10.1109/TMTT.2013.2248017

28. Pantoli, L., G. Leuzzi, A. Santarelli, and F. Filicori, "Stability analysis and design criteria of paralleled-device power amplifiers under large-signal regime," IEEE Trans. Microw. Theory and Tech., Vol. 64, No. 5, 1442-1455, 2016.
doi:10.1109/TMTT.2016.2539951

29. Gonzalez, G., Microwave Transistor Amplifiers: Analysis and Design, 2nd Ed., New Jersey, Prentice Hall, 1997.

30. Rogers, J. W. and C. Plett, Radio Frequency Integrated Circuit Design, Artech House, 2010.

31. Zomorrodian, V., M. Roberg, T. Nguyen, and W. Gaiewski, "Stability analysis of multi-finger GaN FET cells for high power MMIC design," Microw. Symp. Digest, IEEE MTT-S Int., 1-4, 2016.

32. Ayllon, N., J. M. Collantes, A. Anakabe, G. Soubercaze-Pun, S. Forestier, and D. Langrez, "Joint RF and large-signal stability optimization of MMIC power combining amplifiers," Int. Journal of Microw. and Wireless Technologies, Vol. 5, No. 6, 683-688, 2013.
doi:10.1017/S1759078713000767


© Copyright 2010 EMW Publishing. All Rights Reserved