Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 89 > pp. 87-99


By R. Kumar and S. N. Singh

Full Article PDF (1,071 KB)

In this research paper, a Ridge Substrate Integrated Waveguide (RSIW) multiple band bandpass filter embedded with an octagonal shape Complementary Split Ring Resonator (CSRRs) is proposed. The electrically coupled octagonal shape CSRR is placed interdigitally in RSIW using transverse coupling technique to improve multiple passband bandwidths. The filter exhibits a highly selective multiple electric or magnetic or bianisotropic mode for different frequencies. The analysis for spurious band suppression has been done by direct method. The prototype configuration of quarter wavelength octagonal CSRR resonators introduces band suppression at all odd harmonics. The proposed structure of filter with dimension 1.36λg×0.52λg excluding feed port is fabricated. Full wave structure simulated results are compared with measurement ones. The measured passband frequencies and their calculated respective central frequency (f0), fractional bandwidth (FBW) are in close agreement with the simulated result. The spurious higher order harmonics are observed as suppressed. The filter can be utilized to suppress interference from LAN, WLAN, GSM, WiMAX and variable stopband for ISM interference.

R. Kumar and S. N. Singh, "Design and Analysis of Ridge Substrate Integrated Waveguide Bandpass Filter with Octagonal Complementary Split Ring Resonator for Suppression of Higher Order Harmonics," Progress In Electromagnetics Research C, Vol. 89, 87-99, 2019.

1. Caloz, C. and T. Itoh, "The engineering approach," Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 2006.

2. Hsieh, L.-H. and K. Chang, "Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1241-1246, 2003.

3. Sun, S. and L. Zhu, "Wideband microstrip ring resonator bandpass filters under multiple resonances," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 10, 2176-2182, 2007.

4. Zhang, C. A., Y. J. Cheng, and Y. Fan, "Quadri-folded substrate integrated waveguide cavity and its miniaturized bandpass filter applications," Progress In Electromagnetics Research C, Vol. 23, 1-14, 2011.

5. Kumar, R. and S. N. Singh, "Compact Substrate Integrated Waveguide multiband band pass filter using octagonal complementary split ring resonators," International Journal of Applied Engineering Research, Vol. 12, No. 20, 10 127-10 133, 2017.

6. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 2, 68-70, 2001.

7. Che, W., C. Li, K. Deng, and L. Yang, "A novel bandpass filter based on complementary split rings resonators and substrate integrated waveguide," Microwave and Optical Technology Letters, Vol. 50, No. 3, 699-701, 2008.

8. Senior, D. E., X. Cheng, and Y. K. Yoon, "Dual-band filters using complementary split-ring resonator and capacitive loaded half-mode substrate-integrated-waveguide," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, IEEE, 2012.

9. Ur Rehman, M. Z., Z. Baharudin, M. A. Zakariya, M. H. M. Khir, M. T. Jilani, and M. T. Khan, "RF MEMS based half mode bowtie shaped substrate integrated waveguide tunable bandpass filter," Progress In Electromagnetics Research C, Vol. 60, 21-30, 2015.

10. Bozzi, M., D. Deslandes, P. Arcioni, L. Perregrini, K. Wu, and G. Conciauro, "Efficient analysis and experimental verification of substrate-integrated slab waveguides for wideband microwave applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 15, No. 3, 296-306, 2005.

11. Ramesh, S. and T. Rama Rao, "Dielectric loaded exponentially tapered slot antenna utilizing substrate integrated waveguide technology for millimeter wave applications," Progress In Electromagnetics Research C, Vol. 42, 149-164, 2013.

12. Chen, L.-N., Y.-C. Jiao, Z. Zhang, and F.-S. Zhang, "Miniaturized substrate integrated waveguide dual-mode filters loaded by a series of cross-slot structures," Progress In Electromagnetics Research C, Vol. 29, 29-39, 2012.

13. Hopfer, S., "The design of ridged waveguides," IRE Transactions on Microwave Theory and Techniques, Vol. 3, No. 5, 20-29, 1955.

14. Kazemi, R. and A. E. Fathy, "Design of a wideband eight-way single ridge substrate integrated waveguide power divider," IET Microwaves, Antennas & Propagation, Vol. 9, No. 7, 648-656, 2014.

15. Li, C., W. Che, P. Russer, and Y. Chow, "Propagation and band broadening effect of planar ridged substrate-integrated waveguide (RSIW)," International Conference on Microwave and Millimeter Wave Technology, 2008. ICMMT 2008, Vol. 2, 467-470, IEEE, 2008.

16. Cheng, Y. J., C. A. Zhang, and Y. Fan, "Miniaturized multilayer folded substrate integrated waveguide butler matrix," Progress In Electromagnetics Research C, Vol. 21, 45-58, 2011.

17. Han, S., X.-L. Wang, and Y. Fan, "Analysis and design of multiple-band bandstop filters," Progress In Electromagnetics Research, Vol. 70, 297-306, 2007.

18. Bozzi, M., S. A. Winkler, and K. Wu, "Novel compact and broadband interconnects based on ridge substrate integrated waveguide," IEEE MTT-S International Microwave Symposium Digest, 2009. MTT’09, 121-124, IEEE, 2009.

19. Huang, L. and H. Cha, "Compact ridge substrate integrated waveguide filter with transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 778-780, 2015.

20. Mallahzadeh, A. and S. Mohammad-Ali-Nezhad, "A low cross-polarization slotted ridged SIW array antenna design with mutual coupling considerations," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4324-4333, 2015.

21. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter using complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.

22. Gil, M., J. Bonache, and F. Martin, "Metamaterial filters: A review," Metamaterials, Vol. 2, No. 4, 186-197, 2008.

23. Chen, C.-F., T.-Y. Huang, and R.-B. Wu, "Design of microstrip bandpass filters with multiorder spurious-mode suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3788-3793, 2005.

24. Thammawongsa, N., R. Phromloungsri, K. Somsuk, and P. Arunvipas, "Harmonic suppression improvement of microstrip open loop ring resonator bandpass filter," Procedia Engineering, Vol. 8, 19-24, 2011.

25. Ranjan, P., A. Choubey, S. K.Mahto, and R. Sinha, "An ultrathin five-band polarization insensitive metamaterial absorber having hexagonal array of 2D-bravais-lattice," Progress In Electromagnetics Research C, Vol. 87, 13-23, 2018.

26. Yang, Q. and Y. Zhang, "Negative-order ridge substrate integrated waveguide coupled-resonator filter," Electronics Letters, Vol. 50, No. 4, 290-291, 2014.

27. Bozzi, M., S. Germani, and L. Perregrini, "Performance comparison of different element shapes used in printed reflectarrays," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 219-222, 2003.

28. Winkler, S. A., W. Hong, M. Bozzi, and K. Wu, "Polarization rotating frequency selective surface based on substrate integrated waveguide technology," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1202-1213, 2010.

29. Ji, Y., X. S. Yao, and L. Maleki, "High-Q whispering gallery mode dielectric resonator bandpass filter with microstrip line coupling and photonic bandgap mode-suppression," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 8, 310-312, 2000.

30. Smith, D., D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.

31. Rambabu, K., M.-W. Chia, K. M. Chan, and J. Bornemann, "Design of multiple-stopband filters for interference suppression in UWB applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 8, 3333-3338, 2006.

32. Yang, T., P.-L. Chi, R. Xu, and W. Lin, "Folded substrate integrated waveguide based composite right/left-handed transmission line and its application to partial H-plane filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 789-799, 2013.

33. Xu, J., W. Wu, and G. Wei, "Compact multi-band bandpass filters with mixed electric and magnetic coupling using multiple-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 3909-3919, 2015.

34. Zhan, X., Z.-X. Tang, H. Liu, Y. Wu, and B. Zhang, "Compact multiband transversal bandpass filters with multiple transmission zeroes," Progress In Electromagnetics Research, Vol. 34, 157-167, 2012.

35. Lin, S.-C., "Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 8, 1937-1946, 2011.

36. Gorur, A. K. and C. Karpuz, "Design of compact multi-band microstrip bandpass filter having simultaneously excited passbands by using open-circuited stubs," IEEE MTT-S Int. Microwave Symp. Dig., 1-3, 2013.

37. Chen, C., "Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 7, 357-359, July 2012.

38. Tu, W.-H. and K.-W. Hsu, "Design of sext-band bandpass filter and sextaplexer using semilumped resonators for system in a package," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 5, No. 2, 265-273, 2015.

39. Gómez García, R., J.-M. Muñoz-Ferreras, and M. Sánchez-Renedo, "Microwave transversal six-band bandpass planar filter for multi-standard wireless applications," 2011 IEEE Radio and Wireless Symposium (RWS), 166-169, IEEE, 2011.

© Copyright 2010 EMW Publishing. All Rights Reserved