PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 89 > pp. 207-219

5 × 5 MATRIX PATCH TYPE FREQUENCY SELECTIVE SURFACE BASED MINIATURIZED ENHANCED GAIN BROADBAND MICROSTRIP ANTENNA FOR WLAN/WIMAX/ISM BAND APPLICATIONS

By K. Mondal, D. C. Sarkar, and P. P. Sarkar

Full Article PDF (1,264 KB)

Abstract:
In this work FSS (Frequency Selective Surface) based broadband, compact and improved gain microstrip patch antenna with defected ground structure for WLAN and WiMAX applications are proposed. A comparative study has been done by the proposed antenna. It is designed on a Rogers RT/duroid substrate (dielectric constant 2.2, thickness 1.6 mm, and loss tangent 0.0009). The structure of the rectangular patch is 0.10λ0×0.18λ0 at 5.5 GHz, where λ0 is the free space wavelength. The lateral ground plane dimensions are 0.29λ0×0.27λ0×0.03λ0 mm3. A patch type FSS is loaded under the ground plane with separation 10 mm from the antenna. Broad frequency band is obtained along with three resonant frequencies at 5.25 GHz, 6.7 GHz and 11.05 GHz. The achieved frequency band and peak gain are 6.79 GHz (4.93 GHz-11.72 GHz) and 8.82 dBi, respectively. Maximum size reduction of 86% is achieved. The designed antenna is simulated, fabricated and measured to verify the results. The measured results are in good agreement with simulated data. It may be applied in WLAN, WiMAX 5.5/5.8 GHz wireless communication and X band applications.

Citation:
K. Mondal, D. C. Sarkar, and P. P. Sarkar, "5 × 5 Matrix Patch Type Frequency Selective Surface Based Miniaturized Enhanced Gain Broadband Microstrip Antenna for WLAN/WiMAX /ISM Band Applications," Progress In Electromagnetics Research C, Vol. 89, 207-219, 2019.
doi:10.2528/PIERC18110803

References:
1. Slimani, A., S. D. Bennani, A. E. Alami, and M. Amellal, "Gain and bandwidth enhancement of new planar microstrip array antennas geometry for C band weather radar applications," International J. of Microwave and Wireless Technologies, Vol. 9, 1139-1146, 2017.
doi:10.1017/S1759078716001203

2. Lee, J. I. and J. Yeo, "Modified broadband quasi-Yagi antenna with enhanced gain and bandwidth," International J. of Microwave and Optical Technology Letters, Vol. 55, 406-409, 2013.
doi:10.1002/mop.27325

3. Baudha, S. and D. K. Vishwakarma, "Bandwidth enhancement of a planar monopole microstrip patch antenna," International J. of Microwave and Wireless Technologies, Vol. 8, 237-242, 2016.
doi:10.1017/S175907871400141X

4. Rafi, G. and L. Shafai, "Broadband microstrip patch antenna with V-slot sign in or purchase," IEE Proceedings Microwaves Antennas and Propagation, Vol. 151, 435-440, 2004.
doi:10.1049/ip-map:20040846

5. Bhowmik, A. and A. K. Bhattacharjee, "Design of A-shaped coaxial fed compact broadband antenna for WLAN/WiMAX/UWB lower-band, applications," International J. of Microwave and Optical Technology Letters, Vol. 59, 848-853, 2017.
doi:10.1002/mop.30411

6. Liu, J., Q. Xue, and H. Wong, "Design and analysis of a low-profile and broadband microstrip monopolar patch antenna," IEEE Trans. on Antennas and Propagation, Vol. 61, 11-18, 2013.
doi:10.1109/TAP.2012.2214996

7. Yoon, J. H., Y. C. Rhee, and Y. K. Jang, "Compact monopole antenna design for WLAN/WiMAX triple-band operations," Microwave and Optical Technology Letters, Vol. 54, 1838-1846, 2012.
doi:10.1002/mop.26963

8. Sung, Y., "Compact dual-band antenna for 2.4/5.2/5.8 GHz WLAN service for laptop computer applications," Microwave and Optical Technology Letters, Vol. 57, 2207-2213, 2015.
doi:10.1002/mop.29289

9. Mandal, K. and P. P. Sarkar, "A compact low profile wideband U-shape antenna with slotted circular ground plane," International J. of Electronics and Communications, Vol. 70, 336-340, 2016.
doi:10.1016/j.aeue.2015.12.011

10. Gautama, A. K., A. Bisht, and B. K. Kanaujia, "A wideband antenna with defected ground plane for WLAN/WiMAX applications," International J. of Electronics and Communications, Vol. 70, No. 3, 353-358, 2016.

11. Ali, T. and R. C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11N and IEEE 802.16E," Microwave and Optical Technology Letters, Vol. 59, 1000-1006, 2017.
doi:10.1002/mop.30454

12. Malekpour, N. and M. A. Honarvar, "Compact UWB MIMO antenna with band notched characteristic," Microwave and Optical Technology Letters, Vol. 59, 1037-1041, 2017.
doi:10.1002/mop.30462

13. Pan, M. C. and K. L. Wong, "A broadband slot-loaded trapezoid microstrip antenna," Microwave and Optical Technology Letters, Vol. 24, 16-19, 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<16::AID-MOP6>3.0.CO;2-Y

14. Hu, B. and S. Z. Nasimuddin, "Broadband circularly polarized moon-shaped monopole antenna," Microwave and Optical Technology Letters, Vol. 57, 1135-1139, 2015.
doi:10.1002/mop.29035

15. Wong, K. L. and P. W. Lin, "Integration of monopole slot and monopole strip for internal WWAN handset antenna," Microwave and Optical Technology Letters, Vol. 54, 1718-1723, 2012.
doi:10.1002/mop.26870

16. Chang, C. H., W. C. Wei, P. J. Ma, and S. Y. Huang, "Simple printed WWAN monopole slot antenna with parasitic shorted strips for slim mobile phone application," Microwave and Optical Technology Letters, Vol. 55, 2835-2841, 2013.
doi:10.1002/mop.27959

17. Chen, W. S., C. H. Lin, B. Y. Lee, W. H. Hsu, and F. S. Chang, "Monopole slot antenna design for WLAN MIMO application," Microwave and Optical Technology Letters, Vol. 54, 1103-1107, 2012.
doi:10.1002/mop.26740

18. Sung, Y., "Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch," IEEE Trans. on Antennas and Propagation, Vol. 60, No. 4, 1712-1716, 2012.
doi:10.1109/TAP.2012.2186224

19. Kim, G. H. and T. Y. Yun, "Compact ultra wideband monopole antenna with an inverted-L-shaped coupled strip," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1291-1294, 2013.
doi:10.1109/LAWP.2013.2283863

20. Le, T. T., V. H. The, and H. C. Park, "Simple and compact slot-patch antenna with broadband circularly polarized radiation," Microwave and Optical Technology Letters, Vol. 58, No. 7, 1634-1641, 2016.
doi:10.1002/mop.29868

21. Baudha, S. and D. K. Vishwakarma, "Bandwidth enhancement of a planar monopole microstrip patch antenna," International J. of Microwave and Wireless Technologies, Vol. 8, No. 2, 237-242, 2016.
doi:10.1017/S175907871400141X

22. Kundu, A., U. Chakraborty, and A. K. Bhattacharjee, "Design of a compact wide band microstrip antenna with very low VSWR for WiMAX applications," International J. of Microwave and Wireless Technologies, Vol. 9, No. 3, 685-690, 2017.
doi:10.1017/S1759078716000374

23. Kumar, S. and D. K. Vishwakarma, "Miniaturized dual broadband hexagonal slot monopole antenna," IETE Journal of Research, Vol. 62, No. 5, 671-678, 2016.
doi:10.1080/03772063.2016.1160804

24. Fei, P., Y. C. Jiao, Y. Zhu, and F. S. Zhang, "Compact CPW-fed monopole antenna and miniaturized ACS-fed half monopole antenna for UWB applications," Microwave and Optical Technology Letters, Vol. 54, No. 7, 1605-1609, 2012.
doi:10.1002/mop.26909

25. Gao, G. P., B. Hu, and J. S. Zhang, "Design of a miniaturization printed circular-slot UWB antenna by the half-cutting method," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 567-570, 2013.
doi:10.1109/LAWP.2013.2259790

26. Mandal, K. and P. P. Sarkar, "Reduced-size microstrip antenna for Wi-MAX and WLAN," Microwave Review, Vol. 21, 2-5, 2015.

27. Tahir, F. A., "A novel single-layer frequency selective surface for gain enhancement of SWB antennas," Microwave and Optical Technology Letters, Vol. 58, 2030-2035, 2016.
doi:10.1002/mop.29966

28. Mandal, B., A. Chatterjee, and S. K. Parui, "Acrylic substrate based low profile wearable button antenna with FSS layer for WLAN and Wi-Fi applications," Microwave and Optical Technology Letters, Vol. 57, 1033-1038, 2015.
doi:10.1002/mop.29012

29. Moharamzadeh, E. and A. M. Jawan, "Triple-band frequency-selective surfaces to enhance gain of X-band triangle slot antenna," IEEE Antennas Wireless Propagation Letters, Vol. 12, 1145-1148, 2013.
doi:10.1109/LAWP.2013.2281074

30. Chen, H.-Y. and Y. Tao, "Antenna gain and bandwidth enhancement using frequency selective surface with double rectangular ring elements," ISAPE, 271-274, Nov. 29–Dec. 2, Guangzhou, China, 2010.

31. Kushwaha, N., R. Kumar, and T. Oli, "Design of a high gain Ultrawideband slot antenna using frequency Selective surfaces," Microwave and Optical Technology Letters, Vol. 56, 1498-1502, 2014.
doi:10.1002/mop.28324

32. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multioctave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas Wireless Propagation Letters, Vol. 10, 219-222, 2011.
doi:10.1109/LAWP.2011.2130509

33. Bakir, M., K. Delihacioglu, M. Karaaslan, F. Dincer, and C. Sabah, "U-shaped frequency selective surfaces for single- and dual-band applications together with absorber and sensor configurations," IET Microwaves, Antennas & Propagation, Vol. 10, 293-300, 2016.
doi:10.1049/iet-map.2015.0341

34. Dogan, E., E. Unal, D. Kapusuz, M. Karaaslan, and C. Sabah, "Microstrip patch antenna covered with left handed metamaterial," ACES Journal, Vol. 29, 178-183, 2014.

35. Lo, Y. T. and S. W. Lee, Antenna Handbook, 13.13-13.20, Van Nostrand Reinhold Co., New York, 1988.
doi:10.1007/978-1-4615-6459-1

36. Ray, A., M. Kahar, S. Sarkar, S. Biswas, D. Sarkar, and P. P. Sarkar, "A novel broad and multiband frequency selective surface," Microwave and Optical Technology Letters, Vol. 54, 1353-1355, 2012.
doi:10.1002/mop.26843


© Copyright 2010 EMW Publishing. All Rights Reserved