PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 89 > pp. 121-132

EFFECTIVE MODELING OF MAGNETIZED GRAPHENE BY THE WAVE CONCEPT ITERATIVE PROCESS METHOD USING BOUNDARY CONDITIONS

By A. Hlali, Z. Houaneb, and H. Zairi

Full Article PDF (347 KB)

Abstract:
Due to static magnetic field, the conductivity of graphene becomes an anisotropic tensor, which complicates most modeling methodologies. A practical approach to the Wave Concept Iterative Process method (WCIP) modeling of magnetized graphene sheets as an anisotropic conductive surface from the microwave to terahertz frequencies is proposed. We first introduce a brief description of modeling magnetized graphene as an infinitesimally thin conductive sheet. Then, we present a novel manner for the implementation of the anisotropic boundary conditions using the wave concept in the WCIP method. This proposed method is benchmarked with numerical examples to demonstrate its applicability and accuracy. The proposed approach is used to compare the anisotropic model, isotropic model, and the metal for a strip waveguide. We show that the anisotropic model gives more efficient results.

Citation:
A. Hlali, Z. Houaneb, and H. Zairi, "Effective Modeling of Magnetized Graphene by the Wave Concept Iterative Process Method Using Boundary Conditions," Progress In Electromagnetics Research C, Vol. 89, 121-132, 2019.
doi:10.2528/PIERC18111514

References:
1. Hanson, G. W., "Dyadic Green's functions for an anisotropic, non-local model of biased graphene," IEEE Transactions on Antennas and Propagation, Vol. 103, 747-757, 2008.
doi:10.1109/TAP.2008.917005

2. Lovat, G., "Equivalent circuit for electromagnetic interaction and transmission through graphene sheets," IEEE Transactions on Electromagnetic, Vol. 54, 101-109, 2012.
doi:10.1109/TEMC.2011.2169072

3. Tamagnone, M., A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, "Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices," Nature Photonics, 556-563, 2014.
doi:10.1038/nphoton.2014.109

4. Feizi, M., V. Nayyeri, and O. M. Ramahi, "Modeling magnetized graphene in thefinite-difference time-domain method using an anisotropic surface boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 66, 233-241, 2018.
doi:10.1109/TAP.2017.2768081

5. Amanatiadis, S. A., N. V. Kantartzis, T. Ohtani, and Y. Kanai, "Precise modeling of magnetically-biased graphene through a recursive convolutional FDTD method," IEEE Transactions on Magnetics, Vol. 54, 233-241, 2018.
doi:10.1109/TMAG.2017.2749558

6. Wang, X.-H., W.-Y. Yin, and Z. Chen, "Matrix exponential FDTD modeling of magnetized graphene sheet," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1129-1132, 2013.
doi:10.1109/LAWP.2013.2281053

7. Cao, Y. S., P. Li, L. J. Jiang, and A. E. Ruehli, "The derived equivalent circuit model for magnetized anisotropic graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 65, 948-953, 2017.
doi:10.1109/TAP.2016.2633222

8. Shao, Y., J. J. Yang, and M. Huang, "A review of computational electromagnetic methods for graphene modeling," International Journal of Antennas and Propagation, Vol. 81, 1-6, 2016.
doi:10.1155/2016/7478621

9. Azizi, M., M. Boussouis, H. Aubert, and H. Baudrand, "A three-dimensional analysis of planar discontinuities by an iterative method," Microwave and Optical Technology Letters, Vol. 13, 372-376, 1996.
doi:10.1002/(SICI)1098-2760(19961220)13:6<372::AID-MOP16>3.0.CO;2-5

10. Gharsallah, A., A. Gharbi, and H. Baudrand, "Efficient analysis of multiport passive circuits using the iterative technique," Electromagnetics, Vol. 81, 73-84, 2001.
doi:10.1080/02726340151087996

11. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "A new iterative method for analysing nonlinear photonic-crystal structures," International Journal of Electronics, Vol. 97, 1329-1337, 2010.
doi:10.1080/00207217.2010.488905

12. Mami, A., H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of microwave components and circuits using the iterative method," International Journal of RF and Microwave, Vol. 81, 404-414, 2004.
doi:10.1002/mmce.20027

13. Tellache, M., Y. Lamhene, B. Haraoubia, and H. Baudrand, "Application of wave concept iterative process to analyse microwave planar circuits," International Journal of Applied Electromagnetics and Mechanics, Vol. 29, 131-143, 2009.
doi:10.3233/JAE-2009-1007

14. Houaneb, Z., H. Zairi, A. Gharsallah, and H. Baudrand, "A newwave concept iterative method in cylindrical coordinates for modeling of circular planar circuits," Eighth Inter. Multi-Conference on Systems, Signals Devices, 1-7, 2011.

15. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "Analysis of planar circuits using a multigrid iterative method," IEE Proc. Micro., Antennas and Prop., Vol. 153, 109-162, 2006.

16. Li, P. and L. J. Jiang, "Modeling of magnetized graphene from microwave to THz range by DGTD with a scalar RBC and an ADE," IEEE Transactions on Antennas and Propagation, Vol. 63, 4458-4467, 2015.
doi:10.1109/TAP.2015.2456977

17. Shapoval, O. V., J. S. Gomez-Diaz, J. Perruisseau-Carrier, J. R. Mosig, and A. I. Nosich, "Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range," IEEE Transactions on Terahertz Science and Technology, Vol. 3, 666-674, 2013.
doi:10.1109/TTHZ.2013.2263805

18. Guo, Y., T. Zhang, W.-Y. Yin, and X.-H. Wang, "Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 358-367, 2015.
doi:10.1109/TTHZ.2015.2399105

19. Sounas, D. L. and C. Caloz, "Gyrotropy and nonreciprocity of graphene for microwave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 901-914, 2012.
doi:10.1109/TMTT.2011.2182205

20. Chang, Z. and K. S. Chiang, "Experimental verification of optical models of graphene with multimode slab waveguides," Optics Letters, Vol. 4, 2130-2134, 2016.


© Copyright 2010 EMW Publishing. All Rights Reserved