PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 102 > pp. 163-174

HIGH PERMITTIVITY SUBSTRATE AND DGS TECHNIQUE FOR DUAL-BAND STAR-SHAPE SLOTTED MICROSTRIP PATCH ANTENNA MINIATURIZATION

By Z. Bendahmane, S. Ferouani, and C. Sayah

Full Article PDF (309 KB)

Abstract:
Three miniaturization techniques were combined in this work to achieve compact size while maintaining optimal performances of a dual-band star shape slotted Microstrip Patch Antenna (MPA) operating at 2.4 and 5 GHz resonant frequencies. High permittivity substrate and slot techniques were used for miniaturization and impedance matching improvement, while DGS technique was necessary for bandwidth enhancement and further miniaturization of the reference MPA. The miniaturized antenna shows a planar structure and occupies very small area of 15.55 x 19.80 mm2 achieving patch size area reduction of 71.24% and overall size reduction of 75.42%. Respectable positive gains were maintained with radiation efficiency exceeding 83% and 68% at 2.4 GHz and 5 GHz, respectively. The reference and miniaturized MPAs were fabricated, then their performances were measured and compared to the simulated ones. The measured impedance bandwidths of the miniaturized MPA were around 38% and 13% at the two resonant frequencies respectively, which confirm the originality and suitability of the miniaturized MPA for Wireless Local Area Network WLAN and ISM applications.

Citation:
Z. Bendahmane, S. Ferouani, and C. Sayah, "High Permittivity Substrate and DGS Technique for Dual-Band Star-Shape Slotted Microstrip Patch Antenna Miniaturization," Progress In Electromagnetics Research C, Vol. 102, 163-174, 2020.
doi:10.2528/PIERC20021501
http://www.jpier.org/pierc/pier.php?paper=20021501

References:
1. Rothwell, E. J. and R. O. Ouedraogo, "Antenna miniaturization: Definitions, concepts, and a review with emphasis on metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 17, 2089-2123, Nov. 2014, doi: 10.1080/09205071.2014.972470.
doi:10.1080/09205071.2014.972470

2. Fallahpour, M. and R. Zoughi, "Antenna miniaturization techniques: A review of topology- and material-based methods," IEEE Antennas Propag. Mag., Vol. 60, No. 1, 38-50, Feb. 2018, doi: 10.1109/MAP.2017.2774138.
doi:10.1109/MAP.2017.2774138

3. Lee, B. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate," IEEE Trans. Antennas Propag., Vol. 50, No. 8, 1160-1162, Aug. 2002, doi: 10.1109/TAP.2002.801360.
doi:10.1109/TAP.2002.801360

4. Kula, J., D. Psychoudakis, W.-J. Liao, C.-C. Chen, J. Volakis, and J. Halloran, "Patch-antenna miniaturization using recently available ceramic substrates," IEEE Antennas Propag. Mag., Vol. 48, No. 6, 13-20, Dec. 2006, doi: 10.1109/MAP.2006.323335.
doi:10.1109/MAP.2006.323335

5. Ullah, M. H., M. T. Islam, and J. S. Mandeep, "A parametric study of high dielectric material substrate for small antenna design," Int. J. Appl. Electromagn. Mech., Vol. 41, No. 2, 193-198, Feb. 2013, doi: 10.3233/JAE-2012-1603.
doi:10.3233/JAE-2012-1603

6. Liu, H., S. Ishikawa, A. An, S. Kurachi, and T. Yoshimasu, "Miniaturized microstrip meander-line antenna with very high-permittivity substrate for sensor applications," Microw. Opt. Technol. Lett., Vol. 49, No. 10, 2438-2440, Oct. 2007, doi: 10.1002/mop.22798.
doi:10.1002/mop.22798

7. Takigawa, Y., S. Kashihara, and F. Kuroki, "Integrated slot spiral antenna etched on heavily-high permittivity piece," 2007 Asia-Pacific Microwave Conference, 1-4, Bangkok, Thailand, 2007, doi: 10.1109/APMC.2007.4554932.

8. Bhadouria, A. S. and M. Kumar, "Microstrip patch antenna for radiolocation using DGS with improved gain and bandwidt," 2014 International Conference on Advances in Engineering & Technology Research (ICAETR --- 2014), 1-5, Unnao, India, 2014, doi: 10.1109/ICAETR.2014.7012873.

9. Pasha, M. I., C. Kumar, and D. Guha, "Simultaneous compensation of microstrip feed and patch by defected ground structure for reduced cross-polarized radiation," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7348-7352, Dec. 2018, doi: 10.1109/TAP.2018.2869252.
doi:10.1109/TAP.2018.2869252

10. Kumar, C., M. I. Pasha, and D. Guha, "Microstrip patch with nonproximal symmetric defected ground structure (DGS) for improved cross-polarization properties over principal radiation planes," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1412-1414, 2015, doi: 10.1109/LAWP.2015.2406772.
doi:10.1109/LAWP.2015.2406772

11. Rahman, M. M., M. S. Islam, H. Y. Wong, T. Alam, and M. T. Islam, "Performance analysis of a defected ground-structured antenna loaded with stub-slot for 5G communication," Sensors, Vol. 19, No. 11, 2634, Jun. 2019, doi: 10.3390/s19112634.
doi:10.3390/s19112634

12. Reddy, B. R. S. and D. Vakula, "Compact Zigzag-shaped-slit microstrip antenna with circular defected ground structure for wireless applications," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 678-681.

13. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proc. IEEE, Vol. 100, No. 7, 2250-2261, Jul. 2012, doi: 10.1109/JPROC.2012.2188249.
doi:10.1109/JPROC.2012.2188249

14. Su, H., H. Hu, B. Shu, B. Wang, W. Wang, and J. Wang, "Research of the SPiN diodes for silicon-based reconfigurable holographic antenna," Solid-State Electron., Vol. 146, 28-33, Aug. 2018, doi: 10.1016/j.sse.2018.05.001.
doi:10.1016/j.sse.2018.05.001

15. Majid, H. A., M. K. A. Rahim, M. R. Hamid, M. F. Ismail, and F. Malek, "Frequency reconfigurable wide to narrow band monopole with slotted ground plane antenna," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1460-1469, Aug. 2012, doi: 10.1080/09205071.2012.702536.
doi:10.1080/09205071.2012.702536

16. Salim, M. and A. Pourziad, "A novel reconfigurable spiral-shaped monopole antenna for biomedical applications," Progress In Electromagnetics Research Letters, Vol. 57, 79-84, 2015.
doi:10.2528/PIERL15083103

17. Ferouani, S. S., Z. Z. Bendahmane, and A. A. T. Ahmed, "Design and analysis of dual band star shape slotted patch antenna," Microw. Rev., Vol. 23, No. 1, 5, 2017.

18. Laheurte, J.-M. (ed.), Compact Antennas for Wireless Communications and Terminals: Theory and Design, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011.
doi:10.1002/9781118603437

19. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1783-1786, 2016, doi: 10.1109/LAWP.2016.2536678.
doi:10.1109/LAWP.2016.2536678

20. Jafargholi, A., A. Jafargholi, and B. Ghalamkari, "Dual-band slim microstrip patch antennas," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 6818-6825, Dec. 2018, doi: 10.1109/TAP.2018.2871964.
doi:10.1109/TAP.2018.2871964

21. Roy, S. and U. Chakraborty, "Metamaterial-embedded dual wideband microstrip antenna for 2.4GHz WLAN and 8.2 GHz ITU band applications," Waves Random Complex Media, 1-15, Jul. 2018, doi: 10.1080/17455030.2018.1494396.

22. Anantha, B. and R. S. R. Gosula, "Compact single feed dual band microstrip patch antenna with adjustable dual circular polarization," IETE J. Res., 1-9, Apr. 2019, doi: 10.1080/03772063.2019.1598293.

23. Patel, R. H. and T. K. Upadhyaya, "Compact planar dual band antenna for WLAN application," Progress In Electromagnetics Research Letters, Vol. 70, 89-97, 2017.
doi:10.2528/PIERL17062704

24. Kukreja, J., D. Kumar Choudhary, and R. Kumar Chaudhary, "CPW fed miniaturized dual-band short-ended metamaterial antenna using modified split-ring resonator for wireless application," Int. J. RF Microw. Comput.-Aided Eng., Vol. 27, No. 8, e21123, Oct. 2017, doi: 10.1002/mmce.21123.
doi:10.1002/mmce.21123

25. Gupta, A. and R. K. Chaudhary, "The metamaterial antenna: A novel miniaturized dual-band coplanar waveguide-fed antenna with backed ground plane," IEEE Antennas Propag. Mag., Vol. 60, No. 4, 41-48, Aug. 2018, doi: 10.1109/MAP.2018.2839894.
doi:10.1109/MAP.2018.2839894


© Copyright 2010 EMW Publishing. All Rights Reserved