PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 101 > pp. 261-273

UWB MICROSTRIP-FED SLOT ANTENNA WITH IMPROVED BANDWIDTH AND DUAL NOTCHED BANDS USING PROTRUDED PARASITIC STRIPS

By N. Ojaroudi Parchin, H. J. Basherlou, and R. A. Abd-Alhameed

Full Article PDF (668 KB)

Abstract:
In this research work, a new and simple design method of a compact slot antenna with dual notched bands is demonstrated for ultra-wideband (UWB) wireless networks. The presented antenna design is printed on a low-cost FR-4 substrate. Initially, an antenna with improved impedance bandwidth is designed. This is archived by employing the an extra slot with two T-shaped strips which increases the upper-frequency band of the design from 9 to 15 GHz. Later, undesirable bands including 4 GHz C-band, worldwide interoperability for microwave access (WiMAX) at 3.5/5.5 GHz (3.3 to 3.7 GHz and 5.15-5.85 GHz), wireless area network (WLAN) systems at 5-6 GHz (5.15-5.35 and 5.725-5.825 GHz) are eliminated by modifying the upper layer of the antenna using the protruded L-shaped strips inside the square radiation stub and the protruded E-shaped strip inside the feed-line. The proposed antenna offers quite good fundamental properties in terms of impedance bandwidth, gain, fidelity, radiation pattern, etc. A good agreement is observed between the measured and simulated results. Due to the simple structure and excellent performance of the design with controllable band-notch function, the presented microstrip antenna is useful for modern UWB wireless networksand can be an attractive

Citation:
N. Ojaroudi Parchin, H. J. Basherlou, and R. A. Abd-Alhameed, "UWB Microstrip-Fed Slot Antenna with Improved Bandwidth and Dual Notched Bands Using Protruded Parasitic Strips," Progress In Electromagnetics Research C, Vol. 101, 261-273, 2020.
doi:10.2528/PIERC20040701
http://www.jpier.org/pierc/pier.php?paper=20040701

References:
1. Reed, J. H., An Introduction to Ultra-wideband Communication Systems, 1-50, Prentice Hall Press, 2005.

2. Allen, B., et al., Ultra-wideband Antennas and Propagation for Wireless Communications, Radar, and Imaging, John Wiley & Sons, USA, 2007.

3. Federal Communications Commission, FCC 02–48, “First report and order on ultra-wideband technology, Washington, April 22, 2002.

4. Wiesbeck, W., et al., "Basic properties and design principles of UWB antennas," Proc. IEEE, 372-385, 2009.
doi:10.1109/JPROC.2008.2008838

5. Parchin, N. O., et al., "Microwave/RF components for 5G front-end systems," Avid Science, 1-200, 2019.

6. Wang, L., et al., "Compact UWB MIMO antenna with high isolation using fence-type decoupling structure," IEEE Antennas and Wireless Propagation Letters, 1641-1645, 2019.
doi:10.1109/LAWP.2019.2925857

7. Azim, R., et al., "Compact tapered-shape slot antenna for UWB applications," IEEE Antennas Wireless Propag. Lett., 1190-1193, 2011.
doi:10.1109/LAWP.2011.2172181

8. Ning, H., Unit and Ubiquitous Internet of Things, CRC Press, Boca Raton, FL, USA, 2013.

9. Chahat, N., et al., "A compact UWB antenna for on-body applications," IEEE Trans. Antennas Propag., Vol. 59, 1123-1131, 2011.
doi:10.1109/TAP.2011.2109361

10. Guo, L., et al., "Study of compact antenna for UWB applications," Electron. Lett., Vol. 46, 115-116, 2010.
doi:10.1049/el.2010.2772

11. Siahkal-Mahalle, B. H., et al., "Enhanced bandwidth small square monopole antenna with band-notched functions for UWB wireless communications," Applied Computational Electromagnetics Society (ACES) Journal, 759-765, 2012.

12. Parchin, N. O., et al., "Gain improvement of a UWB antenna using a single-layer FSS," 2019 PhotonIcs & Electromagnetics Research Symposium — Fall (PIERS — FALL), 1735-1739, Xiamen, China, December 17–20, 2019.

13. Ojaroudi, N., et al., "UWB omnidirectional square monopole antenna for use in circular cylindrical microwave imaging systems," IEEE Antennas Wireless Propag. Lett., 1350-1353, 2012.
doi:10.1109/LAWP.2012.2227137

14. Ojaroudi, N., "Small microstrip-fed slot antenna with frequency band-stop function," Telecommunications Forum, TELFOR, Belgrade, Serbia, November 27–28, 2013.

15. Valizade, A., et al., "Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips protruded inside rectangular slots for UWB applications," Appl. Comput. Electromagn. Soc. (ACES) J., 816-822, 2012.

16. Horestani, A. K., et al., "Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antenna," IEEE Trans. Antennas Propag., 3766-3776, 2016.
doi:10.1109/TAP.2016.2585183

17. Ray, K. and S. Tiwari, "Ultra wideband printed hexagonal monopole antennas," IET Microw. Antennas Propag., Vol. 4, 437-445, 2010.
doi:10.1049/iet-map.2008.0201

18. Ojaroudi, N., et al., "Compact ultra-wideband monopole antenna with enhanced bandwidthand dual band-stop properties," International Journal of RF and Microwave Computer-Aided Engineering, 346-357, 2014.

19. Valizade, A., et al., "CPW-fed small slot antenna with reconfigurable circular polarization and impedance bandwidth characteristics for DCS/WiMAX applications," Progress In Electromagnetics Research C, 65-72, 2015.
doi:10.2528/PIERC14122901

20. Li, T., et al., "Compact UWB antenna with tunable band-notched characteristic based on microstrip open-loop resonator," IEEE Antennas Wireless Propag. Lett., 1584-1587, 2012.
doi:10.1109/LAWP.2012.2234718

21. Gheethan, A. A. and D. E. Anagnostou, "Dual band-reject UWB antenna with sharp rejection of narrow and closely-spaced bands," IEEE Trans. Antennas Propag., Vol. 60, 2071-2076, 2012.
doi:10.1109/TAP.2012.2186221

22. Liu, X. L., Y. Z. Yin, P. A. Liu, J. H. Wang, and B. Xu, "A CPW-fed dual band-notched UWB antenna with a pair of bended dual-L-shape parasitic branches," Progress In Electromagnetics Research, Vol. 136, 623-634, 2013.
doi:10.2528/PIER12122507

23. Shi, R., X. Xu, J. Dong, and Q. Luo, "Design and analysis of a novel dual band-notched UWB antenna," Int. J. Antennas Propag., 531959, 2014.

24. Ding, J., Z. Lin, Z. Ying, and S. He, "A compact ultra-wideband slot antenna with multiple notch frequency bands," Microw. Opt. Technol. Lett., Vol. 49, 3056-3060, 2007.
doi:10.1002/mop.22892

25. Shi, M., L. Cui, H. Liu, M. Lv, and X. B. Sun, "A new UWB antenna with band-notched characteristic," Progress In Electromagnetics Research M, Vol. 74, 201-209, 2018.
doi:10.2528/PIERM18081002

26. Peng, L. and C. L. Ruan, "Design and time-domain analysis of compact multi-band-notched UWB antennas with EBG structures," Progress In Electromagnetics Research B, Vol. 47, 339-357, 2013.
doi:10.2528/PIERB12113012

27. Li, T., H. Zhai, G. Li, L. Li, and C. Liang, "Compact UWB band-notched antenna design using interdigital capacitance loading loop resonator," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 724-727, 2012.
doi:10.1109/LAWP.2012.2204851

28. Srivastava, G. and A. Mohan, "A planar UWB monopole antenna with dual band notched function," Microw. Opt. Technol. Lett., Vol. 57, 99-104, 2015.
doi:10.1002/mop.28790

29. Yadav, S., A. K. Gautam, and B. K. Kanaujia, "Design of dual band-notched lamp-shaped antenna with UWB characteristics," Int. J. Microw. Wirel. Technol., Vol. 9, 395-402, 2015.
doi:10.1017/S1759078715001609

30. Ojaroudi, N. and N. Ghadimi, "Dual-band CPW-fed slot antenna for LTE andWiBro applications," Microw. Opt. Technol. Lett., Vol. 56, 1013-1015, 2014.
doi:10.1002/mop.28254

31. Parchin, N. O. and R. A. Abd-Alhameed, "A compact Vivaldi antenna array for 5G channel sounding applications," EuCAP, Vol. 846, London, UK, 2018.

32. Parchin, N. O., et al., "UWB MM-Wave antenna array with quasi omnidirectional beams for 5G handheld devices," International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 2016.

33. Ansoft High Frequency Structure Simulator (HFSS), ver. 17, Ansoft Corporation, Pittsburgh, PA, 2017.

34. Parchin, N. O., "Low-profile air-filled antenna for next generation wireless systems," Wireless Personal Communications, Vol. 97, 3293-3300, 2017.
doi:10.1007/s11277-017-4519-2

35. Ullah, A., et al., "Coplanar waveguide antenna with defected ground structure for 5G millimeter wave communications," IEEE MENACOMM’19, Bahrain, 2019.

36. Ojaroudi, N. and N. Ghadimi, "Dual-band CPW-fed slot antenna with a pair of hook-shaped slits," Microw. Opt. Technol. Lett., 172-174, 2015.
doi:10.1002/mop.28805

37. Al-Yasir, Y. I. A., et al., "A new polarization-reconfigurable antenna for 5G applications," Electronics, Vol. 7, 1-9, 2018.
doi:10.3390/electronics7110293

38. Ojaroudiparchin, N., et al., "A switchable 3D-coverage phased array antenna package for 5G mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1747-1750, 2016.
doi:10.1109/LAWP.2016.2532607

39. Bahmani, M., et al., "A compact UWB slot antenna with reconfigurable band-notched function for multimode applications," ACES Journal, Vol. 13, 975-980, 2016.

40. Zolghadr, J., et al., "UWB slot antenna with band-notched property with time domain modeling based on genetic algorithm optimization," ACES Journal, Vol. 31, 926-932, 2016.

41. Parchin, N. O., et al., "Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications," IEEE Access, Vol. 9, 15612-15622, 2019.
doi:10.1109/ACCESS.2019.2893112

42. Parchin, N. O., M. Shen, and G. F. Pedersen, "Small-size tapered slot antenna (TSA) design for use in 5G phased array applications," Applied Computational Electromagnetics Society Journal, Vol. 32, 193-202, 2017.

43. Parchin, N. O., et al., "Multi-band MIMO antenna design with user-impact investigation for 4G and 5G mobile terminals," Sensors, Vol. 19, 456, 2019.
doi:10.3390/s19030456

44. Ojaroudi, M., et al., "Dual band-notch small square monopole antennawith enhanced bandwidth characteristics for UWB applications," ACES J., Vol. 25, 420-426, 2012.

45. Ojaroudi, N., H. Ojaroudi, and N. Ghadimi, "Quadband planar inverted-F antenna (PIFA) for wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 45, 51-56, 2014.
doi:10.2528/PIERL14012403

46. Valizade, A., et al., "CPW-fed small slot antenna with reconfigurable circular polarization and impedance bandwidth characteristics for DCS/WiMAX applications," Progress In Electromagnetics Research C, Vol. 56, 65-72, 2015.
doi:10.2528/PIERC14122901

47. Ojaroudi, N., "Design of microstrip antenna for 2.4/5.8GHz RFID applications," German Microwave Conference, GeMic 2014, RWTH Aachen University, Germany, March 10–12, 2014.

48. Ojaroudi, N., "Circular microstrip antenna with dual band-stop performance for ultra-wideband systems," Microw. Opt. Technol. Lett., Vol. 56, 2095-2098, 2014.
doi:10.1002/mop.28515

49. Mazloum, J., et al., "Bandwidth enhancement of small slot antenna with a variable band-stop function," Wireless Personal Communications, Vol. 95, 1147-1158, 2017.
doi:10.1007/s11277-016-3820-9

50. Ojaroudi, N. and N. Ghadimi, "Design of CPW-fed slot antenna for MIMO system applications," Microw. Opt. Technol. Lett., Vol. 56, 1278-1281, 2014.
doi:10.1002/mop.28346

51. Ojaroudi, N., "Design of ultra-wideband monopole antenna with enhanced bandwidth," 21th Telecommunications Forum (TELFOR 2013), Belgrade, Serbia, November 27–28, 2013.

52. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "A radiation-beam switchable antenna arrayfor 5G smartphones," 2019 PhotonIcs & Electromagnetics Research Symposium — Fall (PIERS — FALL), 1769-1774, Xiamen, China, December 17–20, 2019.

53. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "A substrate-insensitive antenna array withbroad bandwidth and high efficiency for 5G mobile terminals," 2019 PhotonIcs & Electromagnetics Research Symposium — Fall (PIERS — FALL), 1764-1768, Xiamen, China, December 17–20, 2019.

54. Abdollahi, M. M., et al., "Octave-band monopole antenna with a horseshoe ground plane," ACES Journal, Vol. 30, 773-778, 2015.

55. Horestani, A. K., et al., "Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas," IEEE Trans. Antennas Propag., 3766-3776, 2016.
doi:10.1109/TAP.2016.2585183

56. Parchin, N. O., et al., "Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications," EuCAP’2019, Krakow, Poland, March 31–April 5, 2019.

57. Ojaroudi, N., et al., "An omnidirectional PIFA for downlink and uplink satellite applications in C-band," Microwave and Optical Technology Letters, Vol. 56, 2684-2686, 2014.
doi:10.1002/mop.28672

58. Parchin, N. O., et al., "Recent developmentsof reconfigurable antennas for current and future wireless communication systems," Electronics, Vol. 8, 128, 2019.
doi:10.3390/electronics8020128

59. Schantz, H. G., G. Wolence, and E. M. Myszka, "Frequency notched UWB antenna," Proceedings of the IEEE Conference on Ultra-Wideband Systems and Technologies, 214-218, Reston, VA, USA, November 16–19, 2003.

60. Sharawi, M. S., Printed MIMO Antenna Engineering, Artech House, Norwood, MA, USA, 2014.


© Copyright 2010 EMW Publishing. All Rights Reserved