Vol. 104
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-07-20
An Improved Calculation Method for Static Capacitance in Inductor Windings
By
Progress In Electromagnetics Research C, Vol. 104, 25-36, 2020
Abstract
This paper proposes an improved method for calculating static capacitance between two conductors with circular cross-sections in inductor windings. It considers the effects of electric field coupling and energy distribution on static capacitance. In this paper, the capacitance between two conductors in inductor windings is calculated by the improved calculation method and the finite-element method (FEM), respectively. The relative error of the improved calculation method is between 0.11% and 4.51% compared to the FEM. In order to verify the effectiveness of this method for inductor winding, the orthogonal stacking winding and staggered stacking winding are chosen as calculation examples to accurately predict the static capacitance of multi-layer circular-section induction coils. Finite element models for the two types of windings are built to determine the capacitances for our 3×3 array arrangement winding. The results show that the improved calculation method proposed in this paper highly conforms to FEM. Finally, we adopt an air-cored cylindrical inductor winding for experimental verification, and the improved calculation method is proved to be correct.
Citation
Ming-Xing Du, Yuxiao Zhang, Hongbin Wang, Ye Tian, Ziwei Ouyang, and Ke-Xin Wei, "An Improved Calculation Method for Static Capacitance in Inductor Windings," Progress In Electromagnetics Research C, Vol. 104, 25-36, 2020.
doi:10.2528/PIERC20051203
References

1. Lateef, K. H. B., H. Hamad, and A. K. Ahmad, "New design and construction of high-voltage high-current pseudospark switch," IEEE Transactions on Plasma Science, Vol. 43, No. 2, 625-628, 2015.
doi:10.1109/TPS.2014.2379702

2. Bosshard, R. and J. W. Kolar, "Inductive power transfer for electric vehicle charging: Technical challenges and tradeoffs," IEEE Power Electronics Magazine, Vol. 3, No. 3, 22-30, 2016.
doi:10.1109/MPEL.2016.2583839

3. Solas, E., G. Abad, J. A. Barrena, S. Aurtenetxea, A. Carcar, and L. Zajac, "Modular multilevel converter with different submodule concepts — Part II: Experimental validation and comparison for HVDC application," IEEE Transactions on Industrial Electronics, Vol. 60, No. 10, 4536-4545, 2013.
doi:10.1109/TIE.2012.2211431

4. Aguglia, D., "Interconnected high-voltage pulsed-power converters system design for H-ion sources," IEEE Transactions on Plasma Science, Vol. 42, No. 10, 3070-3076, 2014.
doi:10.1109/TPS.2014.2349551

5. Shadmand, M. B. and R. S. Balog, "Determination of parasitic parameters in a high frequency magnetic to improve the manufacturability, performance, and efficiency of a PV inverter," 38th IEEE Photovoltaic Specialists Conference, 001368-001372, Austin, TX, USA, 2012.
doi:10.1109/PVSC.2012.6317854

6. Moorthy, V., "Important factors influencing the magnetic barkhausen noise profile," IEEE Transactions on Magnetics, Vol. 52, No. 4, 1-13, 2016.
doi:10.1109/TMAG.2015.2502222

7. Abetti, P. A., "Survey and classification of publisled data on the surge performance of transformers and rotating machines," Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, Vol. 77, No. 3, 1403-1413, 1958.
doi:10.1109/AIEEPAS.1958.4500166

8. Lopez, Z. L., P. Gomez, F. P. Espino-Cortes, and R. Pena-Rivero, "Modeling of transformer windings for fast transient studies: Experimental validation and performance comparison," IEEE Transactions on Power Delivery, Vol. 32, No. 4, 1852-1860, 2017.
doi:10.1109/TPWRD.2016.2583379

9. Liu, J. and V. Dinavahi, "Detailed magnetic equivalent circuit based realtime nonlinear power transformer model on FPGA for electromagnetic transient studies," IEEE Transactions on Industrial Electronics, Vol. 63, No. 2, 1191-1202, 2016.
doi:10.1109/TIE.2015.2477487

10. Farhangi, B. and H. A. Toliyat, "Modeling and analyzing multiport isolation transformer capacitive components for onboard vehicular power conditioners," IEEE Transactions on Industrial Electronics, Vol. 62, No. 5, 3134-3142, 2015.
doi:10.1109/TIE.2014.2386800

11. Wang, L., Q. Zhu, W. Yu, and A. Q. Huang, "A medium-voltage medium-frequency isolated dc–dc converter based on 15-kV SiC MOSFETs," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 5, No. 1, 100-109, 2017.
doi:10.1109/JESTPE.2016.2639381

12. Liu, C., L. Qi, X. Cui, and X. Wei, "Experimental extraction of parasitic capacitances for high-frequency transformers," IEEE Transactions on Power Electronics, Vol. 32, No. 6, 4157-4167, 2017.
doi:10.1109/TPEL.2016.2597498

13. Panczyk, M. and J. Sikora, "A new imaging algorithm for electric capacitance tomography," Prace Instytutu Elektrotechniki, Vol. LXIII, No. 274, 27-41, 2016.
doi:10.5604/01.3001.0009.4405

14. Liu, X., Y. Wang, J. Zhu, Y. Guo, G. Lei, and C. Liu, "Calculation of capacitance in high-frequency transformer windings," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016.

15. Massarini, A. and M. K. Kazimierczuk, "Self-capacitance of inductors," IEEE Transactions on Power Electronics, Vol. 12, No. 4, 671-676, 1997.
doi:10.1109/63.602562

16. Liu, C., L. Qi, X. Cui, and X. Wei, "Experimental extraction of parasitic capacitances for high-frequency transformers," IEEE Transactions on Power Electronics, Vol. 32, No. 6, 4157-4167, 2017.
doi:10.1109/TPEL.2016.2597498

17. Chagas, N. B. and T. B. Marchesan, "Analytical calculation of static capacitance for high-frequency inductors and transformers," IEEE Transactions on Power Electronics, Vol. 34, No. 2, 1672-1682, 2019.
doi:10.1109/TPEL.2018.2829716

18. Dalessandro, L., F. D. S. Cavalcante, and J. W. Kolar, "Self-capacitance of high-voltage transformers," IEEE Transactions on Power Electronics, Vol. 22, No. 5, 2081-2092, 2007.
doi:10.1109/TPEL.2007.904252

19. Massarini, A. and M. K. Kazimierczuk, "Self-capacitance of inductors," IEEE Transactions on Power Electronics, Vol. 12, No. 4, 671-676, 1997.
doi:10.1109/63.602562

20. Liu, X., Y. Wang, J. Zhu, Y. Guo, G. Lei, and C. Liu, "Calculation of capacitance in high-frequency transformer windings," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016.

21. Wu, B., X. Zhang, X. Liu, and C. He, "An analytical model for predicting the self-capacitance of multi-layer circular-section induction coils," IEEE Transactions on Magnetics, Vol. 54, No. 5, 1-7, 2018.
doi:10.1109/TMAG.2018.2803771

22. RamRakhyani, A. K., S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No. 1, 48-63, 2011.
doi:10.1109/TBCAS.2010.2072782