Vol. 107
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-01
A Novel Compact Wearable Antenna Design for ISM Band
By
Progress In Electromagnetics Research C, Vol. 107, 97-111, 2021
Abstract
A compact wearable antenna operating at 2.45 GHz with a novel Electromagnetic Band Gap (EBG) structure as a reflector is proposed. The broadband monopole is used as the main radiator of the antenna, and the gradient feeder structure and etched slot on the ground are used to adjust the matching effect of the antenna port. The current path is extended, and the structure is made more compact by slotting the surface of the EBG cell. Then, a 3 x 3 EBG reflector is constructed and loaded to the bottom of the antenna to improve the antenna gain performance and reduces the specific absorptivity (SAR). A three-layer human model (skin-fat-muscle) has been built in High Frequency Structure Simulator (HFSS) to analyse the influence of human tissue on the wearable antenna system. Combined with the practical application background, the radiation performance of the system under bending is also explored. The simulation results show that the application of EBG reflector can increase the antenna gain by about 4.77 dBi and the front-to-back ratio by 17dB, reduce SAR by more than 95%, and the overall size of the system is only 60.3 x 60.3 x 3.5 mm3 (0.49λ). The antenna system has the characteristics of simple structure, small size, high gain, and low SAR value, which is of certain reference value for the research on the wearable antenna.
Citation
Bo Yin, Ming Ye, and Youhai Yu, "A Novel Compact Wearable Antenna Design for ISM Band," Progress In Electromagnetics Research C, Vol. 107, 97-111, 2021.
doi:10.2528/PIERC20101901
References

1. Thakkar, Y., X. Lin, Y. Chen, F. Yang, R. Wu, and X. Zhang, "Wearable monopole antennas for microwave stroke imaging," European Conference on Antennas and Propagation, EuCAP, 1-5, 2019.

2. Wagih, M., Y. Wei, A. Komolafe, et al. "Reliable UHF long-range textile-integrated RFID tag based on a compact flexible antenna filament," Sensors, Vol. 20, 12, 2020.
doi:10.3390/s20123435

3. Soontornpipit, P., "Flexible graphene Waffle-typed antenna for skin-typed medical applications," International Electrical Engineering Congress, iEECON, 1-4, 2018.

4. Tariq, F., Q. Amjad, A. Kamran, A. Hassan, and R. Karim, "A flexible antenna on cost-effective PEN substrate for sub-6GHz 5G wireless transceivers," International Conference on Frontiers of Information Technology, FIT, 89-895, 2019.

5. Simorangkir, R. B. V. B., Y. Yang, K. P. Esselle, and B. A. Zeb, "A method to realize robust flexible electronically tunable antennas using polymer-embedded conductive fabric," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 50-58, Jan. 2018.
doi:10.1109/TAP.2017.2772036

6. Simorangkir, R. B. V. B., A. Kiourti, and K. P. Esselle, "UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 493-496, Mar. 2018.
doi:10.1109/LAWP.2018.2797251

7. Hussin, E. F. N. M., P. J. Soh, M. F. Jamlos, et al. "Wideband microstrip-based wearable antenna backed with full ground plane," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 7, 1-12, Mar. 2019.

8. Ashyap, A. Y. I., et al., "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2550-2553, Jul. 2017.

9. Atanasova, G. L. and N. T. Atanasov, "Impact of electromagnetic properties of textile materials on performance of a low-profile wearable antenna backed by a reflector," 2020 International Workshop on Antenna Technology, iWAT, 1-4, 2020.

10. Sultana, S., R. R. Hasan, T. Kumar Mondal, R. Tariqul Hasan Tusher, and S. Zabin, "Performance analysis of body implantable PIFA at different substrate material," 2017 4th International Conference on Advances in Electrical Engineering, ICAEE, 68-73, 2017.
doi:10.1109/ICAEE.2017.8255329

11. Kulkarni, J. S. and R. Seenivasan, "A novel, very low profile, dual band inverted ‘E’ monopole antenna for wireless applications in the laptop computer," IEICE Electronics Express, Vol. 16, No. 10, 20190157, 2019.
doi:10.1587/elex.16.20190157

12. Nechayev, Y. I., P. S. Hall, and Z. H. Hu, "Characterisation of narrowband communication channels on the human body at 2.45 GHz," IET Microwaves, Antennas Propag., Vol. 4, No. 6, 722-732, Jun. 2010.
doi:10.1049/iet-map.2009.0094

13. Rowe, W. S. T. and R. B. Waterhouse, "Reduction of backward radiation for CPW fed aperture stacked patch antennas on small ground planes," IEEE Trans. Antennas Propag., Vol. 51, No. 6, 1411-1413, Jun. 2003.
doi:10.1109/TAP.2003.812250

14. Salonen, P., L. Sydanheimo, M. Keskilammi, and M. Kivikoski, "A small planar inverted-F antenna for wearable applications," Digest of Papers. Third International Symposium on Wearable Computers, 95-100, 1999.
doi:10.1109/ISWC.1999.806679

15. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 926-935, Apr. 2009.
doi:10.1109/TAP.2009.2014527

16. Raad, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 524-531, Feb. 2013.
doi:10.1109/TAP.2012.2223449

17. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low-profile dual-band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6487-6490, Dec. 2014.
doi:10.1109/TAP.2014.2359194

18. Alqadami, A. S. M., K. S. Bialkowski, A. T. Mobashsher, and A. M. Abbosh, "Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis," IEEE Trans. Biomedical Circuits and Systems, Vol. 13, No. 1, 124-134, Feb. 2019.
doi:10.1109/TBCAS.2018.2878057

19. Kuang, B., "Analysis and design of sensitively loaded miniaturized and wideband antennas,", Xidian University, Xi’an, 2013.

20. Arora, T., S. Gupta, K. K. Singh, and N. Kumar, "Effect of feedline tapering on the performance of super ultra-wideband circular monopole microstrip antenna," 2017 IEEE International Conference on Antennas Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications, iAIM, 1-4, 2017.

21. Xie, Z. C., Y. Huang, Z. Q. Wang, et al. "Design and sensing characteristics of 2.45 GHz flexible microstrip antenna," Journal of Jilin University (Science edition), Vol. 57, 166-171, 2019.

22. Wang, M., et al., "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Trans. Antennas Propag., Vol. 66, No. 6, 3076-3086, Jun. 2018.
doi:10.1109/TAP.2018.2820733

23. Raad, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 524-531, Feb. 2013.
doi:10.1109/TAP.2012.2223449

24. Ashyap, A. Y. I., et al., "Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications," IEEE Access, Vol. 6, 77529-77541, 2018.
doi:10.1109/ACCESS.2018.2883379

25. Gao, G., B. Hu, S. Wang, and C. Yang, "Wearable circular ring slot antenna with EBG structure for wireless body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 434-437, Mar. 2018.
doi:10.1109/LAWP.2018.2794061

26. El Atrash, M., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications," IEEE Trans. Antennas Propag., Vol. 67, No. 10, 6378-6388, Oct. 2019.
doi:10.1109/TAP.2019.2923058