Vol. 113
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-06-16
Multi-Objective Optimal Design and Analysis of Variable Leakage Flux IPM Motors for Improve Flux-Weakening Ability
By
Progress In Electromagnetics Research C, Vol. 113, 147-160, 2021
Abstract
In this paper, two variable leakage flux permanent magnet (VLFPM) machines are proposed. The keys are to adopt the rotor with single-layer and double-layer PMs and intentionally create leakage flux paths to extend the operating speed range and increase the machine efficiency. The characteristics of the variable leakage flux of the proposed machines are investigated. In order to improve the performances of the VLFPM machines, the Multi-Objective Genetic Algorithm (MOGA) method is applied for achieving the multi-objective optimizations of variables. Then, the performances of the double-layer permanent magnet variable leakage flux motor (DLPM-VLFM) and the single-layer permanent magnet variable leakage flux motor (SLPM-VLFM) are analyzed and compared with conventional interior PM machine (CIPMM) in detail. The performances mainly include flux linkage and torque, flux-weakening capability and efficiency. Finally, it is shown by analysis and comparison that the DLPM-VLFM can have a wider range of speed and high efficiency.
Citation
Xiping Liu, Gaosheng Guo, Longxin Du, and Wenjian Zhu, "Multi-Objective Optimal Design and Analysis of Variable Leakage Flux IPM Motors for Improve Flux-Weakening Ability," Progress In Electromagnetics Research C, Vol. 113, 147-160, 2021.
doi:10.2528/PIERC21042502
References

1. Cao, R. W., C. Mi, and M. Cheng, "Quantitative comparison of flux-switching permanent-magnet motors with interior permanent magnet motor for EV, HEV, and PHEV applications," IEEE Transactions on Magnetics, Vol. 48, No. 68, 2374-2384, 2012.
doi:10.1109/TMAG.2012.2190614

2. Kakosimos, P. E., A. G. Sarigiannidis, M. E. Beniakar, A. G. Kladas, and C. Gerada, "Induction motors versus permanent-magnet actuators for aerospace applications," IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, 4315-4325, 2014.
doi:10.1109/TIE.2013.2274425

3. Yang, Y. Y., S. M. Castano, R. Yang, M. Kasprzak, B. Bilgin, A. Sathyan, H. Dadkhah, and A. Emadi, "Design and comparison of interior permanent magnet motor topologies for traction applications," IEEE Transactions on Transportation Electrification, Vol. 3, No. 1, 86-97, 2017.
doi:10.1109/TTE.2016.2614972

4. Yang, Z., F. Shang, I. P. Brown, and M. Krishnamurthy, "Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications," IEEE Transactions on Transportation Electrification, Vol. 1, No. 3, 245-254, 2015.
doi:10.1109/TTE.2015.2470092

5. Jang, J., M. Humza, and B. Kim, "Design of a variable-flux permanent-magnet synchronous motor for adjustable-speed operation," IEEE Transactions on Industry Applications, Vol. 52, No. 4, 2996-3004, 2016.
doi:10.1109/TIA.2016.2547986

6. Kim, K.-C., "A novel magnetic flux weakening method of permanent magnet synchronous motor for electric vehicles," IEEE Transactions on Magnetics, Vol. 48, No. 11, 4042-4045, 2012.
doi:10.1109/TMAG.2012.2198444

7. Kohara, A., K. Hirata, N. Niguchi, and Y. Ohno, "Finite-element analysis and experiment of current superimposition variable flux machine using permanent magnet," IEEE Transactions on Magnetics, Vol. 52, No. 9, 18-25, 2016.
doi:10.1109/TMAG.2016.2572659

8. Kato, T., N. Limsuwan, C. Y. Yu, K. Akatsu, and R. D. Lorenz, "Rare earth reduction using a novel variable magnetomotive force flux-intensified IPM machine," IEEE Transactions on Industry Applications, Vol. 50, No. 3, 1748-1756, 2014.
doi:10.1109/TIA.2013.2283314

9. Limsuwan, N., Y. Shibukawa, D. D. Reigosa, and R. D. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2004-2012, 2011.
doi:10.1109/TIA.2011.2161534

10. Zhu, X. Y., W. Y. Wu, S. Yang, Z. X. Xiang, and L. Quan, "Comparative Design and analysis of new type of flux-intensifying interior permanent magnet motors with different q-axis rotor flux barriers," IEEE Transactions on Energy Conversion, Vol. 33, No. 4, 2260-2269, 2018.
doi:10.1109/TEC.2018.2837119

11. Hua, H., Z. Q. Zhu, A. Pride, R. Deodhar, and T. Sasaki, "Comparative study on variable flux memory machines with parallel or series hybrid magnets," IEEE Transactions on Industry Applications, Vol. 55, No. 2, 1408-1419, 2019.
doi:10.1109/TIA.2018.2879858

12. Hua, H., Z. Q. Zhu, A. Pride, R. P. Deodhar, T. Sasaki, and , "A novel variable flux memory machine with series hybrid magnets," IEEE Transactions on Industry Applications, Vol. 53, No. 5, 4396-4405, 2017.
doi:10.1109/TIA.2017.2709261

13. Liu, F. L., L. M. Cheng, M. Q. Wang, G. Y. Qiao, P. Zheng, and H. Yang, "Comparative study of hybrid-PM variable-flux machines with different series PM configurations," AIP Advances, Vol. 9, No. 12, 321-332, 2019.

14. Elloumi, N., M. Bortolozzi, A. Masmoudi, M. Mezzarobba, M. Olivo, and A. Tessarolo, "Numerical and analytical approaches to the modeling of a spoke type IPM machine with enhanced flux weakening capability," IEEE Transactions on Industry Applications, Vol. 55, No. 5, 4702-4714, 2019.
doi:10.1109/TIA.2019.2924857

15. Liu, X., T. Sun, Y. Zou, C. Huang, and J. Liang, "Modelling and analysis of a novel mechanical-variable-flux IPM machine with rotatable magnetic poles," IET Electric Power Applications, Vol. 14, No. 11, 2171-2178, 2020.
doi:10.1049/iet-epa.2020.0171

16. Tessarolo, A., M. Mezzarobba, and R. Menis, "Modeling, analysis, and testing of a novel spoke-type interior permanent magnet motor with improved flux weakening capability," IEEE Transactions on Magnetics, Vol. 51, No. 4, 1-10, 2015.

17. Aoyama, M. and T. Noguchi, "Study and experimental performance evaluation of flux intensifying PM motor with variable leakage magnetic flux," Electrical Engineering In Japan, Vol. 207, No. 4, 36-54, 2019.
doi:10.1002/eej.23162

18. Kato, T., M. Minowa, H. Hijikata, K. Akatsu, and R. D. Lorenz, "Design methodology for variable leakage flux IPM for automobile traction drives," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3811-3821, 2015.
doi:10.1109/TIA.2015.2439642

19. Kusase, S. and K. Kurihara, "A proposal for a new variable leakage flux motor with interpolar gap and permanent magnets," IEEJ Journal of Industry Applications, Vol. 6, No. 6, 381-386, 2017.
doi:10.1541/ieejjia.6.381

20. Wang, A., Y. Jia, and W. L. Soong, "Comparison of five topologies for an interior permanent-magnet machine for a hybrid electric vehicle," IEEE Transactions on Magnetics, Vol. 47, No. 10, 3606-3609, 2011.
doi:10.1109/TMAG.2011.2157097

21. Ma, Y., T. W. Ching, W. N. Fu, and S. Niu, "Multi-objective optimization of a direct-drive dual-structure permanent magnet machine," IEEE Transactions on Magnetics, Vol. 55, No. 10, 1-4, 2019.
doi:10.1109/TMAG.2019.2922475

22. Asef, P., R. B. Perpina, M. R. Barzegaran, A. Lapthorn, and D. Mewes, "Multiobjective design optimization using dual-level response surface methodology and Booth’s Algorithm for permanent magnet synchronous generators," IEEE Transactions on Energy Conversion, Vol. 33, No. 2, 652-659, 2018.
doi:10.1109/TEC.2017.2777397

23. Nakata, T., M. Sanada, S. Morimoto, and Y. Inoue, "Automatic design of IPMSMs using a genetic algorithm combined with the coarse-mesh FEM for enlarging the high-efficiency operation area," IEEE Transactions on Industrial Electronics, Vol. 64, No. 12, 9721-9728, 2017.
doi:10.1109/TIE.2017.2714133