Vol. 120

Latest Volume
All Volumes
All Issues
2022-05-10

A Novel Antipodal Vivaldi Antenna with Quad Band Notch Characteristics for UWB Applications

By Vikas Kumar Rai, Mithilesh Kumar, and Shyama Prasad Chakraborty
Progress In Electromagnetics Research C, Vol. 120, 119-133, 2022
doi:10.2528/PIERC22022402

Abstract

This work presents a design and analysis of a high gain Antipodal Vivaldi Antenna (AVA) with quad band notch characteristics for Ultra-Wideband (UWB) applications. The proposed AVA is designed on a 1.2 mm FR4 substrate with dielectric constant 4.3 and loss tangent 0.025. Initially, the AVA parameters are optimized in a full wave simulator to get the required UWB performance. The UWB performance is further improved significantly by cutting a C shaped slot from the AVA flares. The C shaped slot introduces an extra resonance that widens the initial bandwidth. The band-notched filtering characteristics are achieved by - adding a Sun Shaped Slot (SSS) on the top and bottom flares of the AVA, inserting a hexagonal shaped Complimentary Split Ring Resonator (CSRR) on the ground plane of the AVA and finally by inserting vias on either side of the feed line. The first designed notch band is from 2.2-2.7 GHz, covering the Bluetooth region. The second notch band is designed from 3.3-3.6 GHz, corresponding to WiMAX applications, and the third notch band is from 4.6-5.7 GHz corresponding to the WLAN band. Finally, a notch is fashioned from 8.8-9.5 GHz, corresponding to ITU applications. The simulated and measured return loss plots show that the antenna achieves an impedance bandwidth of 1.15-14 GHz with a reflection coefficient less than -10 dB, except at the four eliminating bands. To the best of the authors knowledge, the proposed technique is novel, and it allows good narrowband rejection over the UWB regime.

Citation


Vikas Kumar Rai, Mithilesh Kumar, and Shyama Prasad Chakraborty, "A Novel Antipodal Vivaldi Antenna with Quad Band Notch Characteristics for UWB Applications," Progress In Electromagnetics Research C, Vol. 120, 119-133, 2022.
doi:10.2528/PIERC22022402
http://www.jpier.org/PIERC/pier.php?paper=22022402

References


    1. Federal Communications Commission, "First Report and Order, Revision of Part 15 of the Commission's Rule Regarding Ultra-Wideband,", 2002.
    doi:10.1109/LAWP.2008.2001026

    2. Ahmed, O. and A. R. Sebak, "A printed monopole antenna with two steps and a circular slot for UWB applications," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 411-413, 2008.
    doi:10.1109/TAP.1959.1144653

    3. Dyson, J., "The equiangular spiral antenna," IRE Trans. Antennas Propagat., Vol. 7, 181-187, 1959.
    doi:10.1109/IRECON.1957.1150566

    4. DuHamel, R. and D. Isbell, "Broadband logarithmically periodic antenna structures," IRE Nat. Conv. Rec., 119-128, 1957.

    5. Gibson, P. J., "The Vivaldi aerial," Proc. 9th Eur. Microw. Conf., 101-105, Brighton, U.K., Jun. 1979.
    doi:10.1016/j.aeue.2015.05.017

    6. Abhik, G., K. Anirban, P. Manimala, and G. Rowdra, "A super wideband Chebyshev tapered antipodal Vivaldi antenna," AEU Int. J. Electron. Commun., Vol. 69, 1328, 2015.
    doi:10.1016/j.aeue.2016.10.007

    7. Furat, A. and F. Pascal, "A customized reduced size antipodal Vivaldi antenna used in wireless baseband transmission for short-range communication," AEU Int. J. Electron. Commun., Vol. 70, 1684-1688, 2016.
    doi:10.1109/LAWP.2015.2457919

    8. Moosazadeh, M. and S. Kharkovsky, "A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 552-525, Mar. 2016.
    doi:10.1049/iet-map.2015.0374

    9. Moosazadeh, M., S. Kharkovsky, and J. T. Case, "Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials," IET Microwaves Antennas Propag., Vol. 10, No. 3, 301-309, 2016.
    doi:10.1016/j.aeue.2016.10.001

    10. Wang, Z., J. Liu, and Y. Yin, "Triple band-notched UWB antenna using novel asymmetrical resonators," AEU Int. J. Electron. Commun., Vol. 70, 1630-1637, 2016.
    doi:10.1109/LAWP.2015.2496159

    11. Li, W.-A., Z.-H. Tu, Q.-X. Chu, and X.-H. Wu, "Differential stepped-slot UWB antenna with common-mode suppression and dual sharp-selectivity notched bands," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1120-1123, 2016.
    doi:10.1109/TAP.2013.2261575

    12. Chu, Q.-X., C.-X. Mao, and H. Zhu, "A compact notched band UWB slot antenna with sharp selectivity and controllable bandwidth," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 3961-3966, Aug. 2013.

    13. Reddy, K. A., S. Natarajamani, and S. K. Behera, "Antipodal Vivaldi antenna UWB antenna with 5.5 GHz band-notch characteristics," Proc.Int. Conf. Comput., Electron. Elect. Technol., 821-824, Kumaracoil, India, 2012.
    doi:10.1049/el.2009.2170

    14. Ye, L.-H. and Q.-X. Chu, "Improved band notched UWB slot antenna," Electron. Lett., Vol. 45, No. 25, 1890-1897, Dec. 2009.
    doi:10.1109/TMAG.2013.2283774

    15. Choi, H.-S., T.-W. Kim, H.-Y. Hwang, and K. Choi, "An UWB antenna design with adjustable second rejection band using a SIR," IEEE Trans. Magn., Vol. 50, No. 2, 913-916, Feb. 2014.
    doi:10.1109/TAP.2014.2327124

    16. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4015-4020, Aug. 2014.

    17. Yang, D., S. Liu, M. Chen, and Y. Wen, "A compact Vivaldi antenna with triple band-notched characteristics," Proc. IEEE 6th Int. Symp. Microw., Antenna, Propag., EMC Technol., 216-219, Shanghai, China, 2015.

    18. Sarkar, D. and K. V. Srivastava, "SRR-loaded antipodal Vivaldi antenna for UWB applications with tunable notch function," Proc. Int. Symp. Electromagn. Theory, 466-469, Hiroshima, Japan, 2013.

    19. John, M., M. J. Ammann, and P. McEvoy, "UWB vivaldi antenna based on a spline geometry with frequency band-notch," Proc. IEEE Int. Symp. Antennas Propag. Soc. (AP-S), 1-4, Jul. 5-11, 2008.

    20. Aravinda Reddy, K., S. Natarajamani, and S. K. Behera, "Antipodal Vivaldi antenna UWB antenna with 5.5 GHz band-notch characteristics," International Conference on Computing, Electronics and Electrical Technologies (ICCEET), 821-824, Kumaracoil, 2012.
    doi:10.1109/ICMMT.2016.7762454

    21. Yao, L., J. Xiao, H. Zhu, N. Li, and X. Li, "A high gain UWB Vivaldi antenna with band notched using Capacitively Loaded Loop (CLL) resonators," IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 820-822, Beijing, 2016.

    22. Yang, D., S. Liu, M. Chen, and Y. Wen, "A compact Vivaldi antenna with triple band-notched characteristics," IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 216-219, Shanghai, 2015.

    23. Zhang, B., K. Zhang, S. Yang, and H. Zhai, "A Vivaldi antenna with adjustable in-band notched characteristic," Asia Paci c International Symposium on Electromagnetic Compatibility (APEMC), 713-715, Shenzhen, 2016.

    24. Constantine, A., Balanis Antenna Theory: Analysis and Design, 1072, 3rd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
    doi:10.1155/2015/439832

    25. Alshamaileh, K. A., M. J. Almalkawi, and V. K. Devabhaktuni, "Dual band-notched microstrip-fed Vivaldi antenna utilizing compact EBG structures," International Journal of Antennas and Propagation, Vol. 2, 1-7, 2015.

    26. Abubakar, S. A., T. H. Masri, W. A. W. Z. Abidin, K. H. Ping, and H. T. Su, "Corrugated band-notched antipodal Vivaldi antenna using mushroom type EBG structure for wideband applications,".
    doi:10.1155/2014/761634

    27. Elsheakh, D. M. and E. A. Abdallah, "Ultrawideband Vivaldi antenna for DVB-T, WLAN, and WiMAX applications," International Journal of Antennas and Propagation, 2014.
    doi:10.1109/LAWP.2014.2329496

    28. Tang, T. and K. Lin, "An ultrawideband MIMO antenna with dual band-notched function," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1076-1079, 2014.
    doi:10.1109/LAWP.2015.2422571

    29. Kang, L., H. Li, X. Wang, and X. Shi, "Compact offset microstrip-fed MIMO antenna for band-notched UWB applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1754-1757, 2015.
    doi:10.2528/PIERC14042101

    30. Zhao, H., F.-S. Zhang, and X.-K. Zhang, "A compact band-notched Ultra-wideband spatial diversity antenna," Progress In Electromagnetics Research C, Vol. 51, 19-26, 2014.
    doi:10.1109/LAWP.2014.2305772

    31. Gao, P., S. He, and X. Wei, "Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 13, 376-379, 2014.
    doi:10.1109/TAP.2015.2406892

    32. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Trans. Antennas and Propag., Vol. 63, No. 5, 1917-1924, May 2015.

    33. Li, D. H., F. S. Zhang, L. X. Cao, and Y. Zhao, "A compact dual band-rejected MIMO Vivaldi antenna for UWB wireless applications," Progress In Electromagnetics Research Letters, Vol. 86, 97-105, 2019.
    doi:10.2528/PIERC19031202

    34. Sultan, K. S. and H. H. Abdullah, "Planar UWB MIMO-diversity antenna with dual notch characteristics," Progress In electromagnetics Research C, Vol. 93, 119-129, 2019.
    doi:10.4236/ojapr.2017.53008

    35. Sultan, K. S., O. M. A. Dardeer, and H. A. Mohamed, "Design of compact dual notched self-complementary UWB antenna," Open Journal of Antennas and Propagation, Vol. 5, No. 3, 99-109, 2017.