Vol. 121

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-06-27

Design and Analysis of Inscribed Fractal Super Wideband Antenna for Microwave Applications

By Dipika Sagne and Rashmi A. Pandhare
Progress In Electromagnetics Research C, Vol. 121, 49-63, 2022
doi:10.2528/PIERC22030703

Abstract

This paper presents the design of a Super Wideband (SWB) antenna with enhanced bandwidth for microwave application with a detailed parametric study of the methods used to enhance the bandwidth of the conventional antenna. The proposed SWB antenna has emerged from a traditional circular monopole antenna by experimenting with the inscribed fractal structure with a tapered feed line and partial ground plane with blended corners and achieved a super wideband frequency range from 2.31 GHz to 105.5 GHz with a fractional bandwidth 192.1%, Bandwidth Dimension Ratio (BDR) 2154.88. The antenna has a relatively small electrical dimension i.e. 0.33λ0x0.27λ0, where λ0 corresponds to the lower-end operating frequency and exhibits good gain and efficiency characteristics. In order to observe the signal correlation of the proposed antenna, the time domain analysis using similar antennas in face-to-face and side-to-side scenarios has been performed using the EM simulation tool CST-STUDIO. The simulated gain varies from 1.28 to 9.35 dBi. The proposed antenna can be used for S, C, X, Ka, Ku, V and W bands for microwave and millimetre wave applications. The simulated and measured results of the proposed antenna exhibit a good agreement.

Citation


Dipika Sagne and Rashmi A. Pandhare, "Design and Analysis of Inscribed Fractal Super Wideband Antenna for Microwave Applications," Progress In Electromagnetics Research C, Vol. 121, 49-63, 2022.
doi:10.2528/PIERC22030703
http://www.jpier.org/PIERC/pier.php?paper=22030703

References


    1. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.

    2. Balani, W., et al., "Design techniques of super-wideband antenna --- Existing and future prospective," IEEE Access, Vol. 7, 141241-141257, 2019.
    doi:10.1109/ACCESS.2019.2943655

    3., "Revision of Part 15 of the Commission's rules regarding ultra wideband transmission systems,", 2002.
    doi:10.1109/ACCESS.2019.2943655

    4. Ali, T., B. K. Subhash, S. Pathan, and R. C. Biradar, "A compact decagonal-shaped UWB monopole planar antenna with truncated ground plane," Microwave and Optical Technology Letters, Vol. 60, No. 12, 2937-2944, Dec. 2018, doi: 10.1002/mop.31448.
    doi:10.1002/mop.31448

    5. Dhasarathan, V., M. Sharma, M. Kapil, P. C. Vashist, S. K. Patel, and T. K. Nguyen, "Integrated bluetooth/LTE2600 superwideband monopole antenna with triple notched (WiMAX/WLAN/DSS) band characteristics for UWB/X/Ku band wireless network applications," Wireless Networks, Vol. 26, No. 4, 2845-2855, May 2020, doi: 10.1007/s11276-019-02230-0.
    doi:10.1007/s11276-019-02230-0

    6. Alluri, S. and N. Rangaswamy, "Compact high bandwidth dimension ratio steering-shaped super wideband antenna for future wireless communication applications," Microwave and Optical Technology Letters, Vol. 62, No. 12, 3985-3991, Dec. 2020, doi: 10.1002/mop.32541.
    doi:10.1002/mop.32541

    7. Dey, S. and N. C. Karmakar, "Design of novel super wide band antenna close to the fundamental dimension limit theory," Scientific Reports, Vol. 10, No. 1, 16306, Dec. 2020, doi: 10.1038/s41598-020-73478-2.
    doi:10.1038/s41598-020-73478-2

    8. Azim, R., M. T. Islam, H. Arshad, Md. M. Alam, N. Sobahi, and A. I. Khan, "CPW-fed super-wideband antenna with modified vertical bow-tie-shaped patch for wireless sensor networks," IEEE Access, Vol. 9, 5343-5353, 2021, doi: 10.1109/ACCESS.2020.3048052.
    doi:10.1109/ACCESS.2020.3048052

    9. Okan, T., "A compact octagonal-ring monopole antenna for super wideband applications," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1237-1244, Mar. 2020, doi: 10.1002/mop.32117.
    doi:10.1002/mop.32117

    10. Singhal, S. and A. K. Singh, "Modified star-star fractal (MSSF) super-wideband antenna," Microwave and Optical Technology Letters, Vol. 59, No. 3, 624-630, Mar. 2017, doi: 10.1002/mop.30357.
    doi:10.1002/mop.30357

    11. Okas, P., A. Sharma, G. Das, and R. K. Gangwar, "Elliptical slot loaded partially segmented circular monopole antenna for super wideband application," AEU --- International Journal of Electronics and Communications, Vol. 88, 63-69, May 2018, doi: 10.1016/j.aeue.2018.03.004.
    doi:10.1016/j.aeue.2018.03.004

    12. Rahman, M. A., M. S. J. Singh, M. Samsuzzaman, and M. T. Islam, "A compact skull-shaped defected ground super wideband microstrip monopole antenna for short-distance wireless communication," International Journal of Communication Systems, Vol. 33, No. 14, e4527, Sep. 2020, doi: 10.1002/dac.4527.
    doi:10.1002/dac.4527

    13. Oskouei, H. R. D., A. R. Dastkhosh, A. Mirtaheri, and M. Naseh, "A small cost-effective super ultra-wideband microstrip antenna with variable band-notch filtering and improved radiation pattern with 5G/IoT applications," Progress In Electromagnetics Research M, Vol. 83, 191-202, 2019.
    doi:10.2528/PIERM19051802

    14. Palaniswamy, S. K., M. Kanagasabai, S. Arun Kumar, M. G. N. Alsath, S. Velan, and J. K. Pakkathillam, "Super wideband printed monopole antenna for ultra wideband applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 133-141, Feb. 2017, doi: 10.1017/S1759078715000951.
    doi:10.1017/S1759078715000951

    15. Rahman, S. U., Q. Cao, H. Ullah, and H. Khalil, "Compact design of trapezoid shape monopoleantenna for SWB application," Microwave and Optical Technology Letters, Vol. 61, No. 8, 1931-1937, Aug. 2019, doi: 10.1002/mop.31805.
    doi:10.1002/mop.31805

    16. Malik, R., P. Singh, H. Ali, and T. Goel, "A star shaped superwide band fractal antenna for 5G applications," 2018 3rd International Conference for Convergence in Technology (I2CT), 2018, doi: 10.1109/I2CT.2018.8529404.

    17. Seyfollahi, A. and J. Bornemann, "Printed-circuit monopole antenna for super-wideband applications," European Conference on Antennas & Propagation, 2018.

    18. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feedline, feed region and patch for super wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 1, 39-45, Jan. 2014, doi: 10.1049/iet-map.2013.0094.
    doi:10.1049/iet-map.2013.0094

    19. Ray, K. P. and S. Tiwari, "Ultra wideband printed hexagonal monopole antennas," IET Microwaves, Antennas & Propagation, Vol. 4, No. 4, 437, 2010, doi: 10.1049/iet-map.2008.0201.
    doi:10.1049/iet-map.2008.0201

    20. Kundu, S., "Experimental study of a printed ultra-wideband modified circular monopole antenna," Microwave and Optical Technology Letters, Vol. 61, No. 5, 1388-1393, May 2019.
    doi:10.1002/mop.31736

    21. Ray, K. P. and Y. Ranga, "Ultrawideband printed elliptical monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1189-1192, Apr. 2007, doi: 10.1109/TAP.2007.893408.
    doi:10.1109/TAP.2007.893408

    22. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Super wideband antenna with single band suppression," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 143-150, Feb. 2017, doi: 10.1017/S1759078715000963.
    doi:10.1017/S1759078715000963

    23. Balani, W., M. Sarvagya, A. Samasgikar, T. Ali, and P. Kumar, "Design and analysis of super wideband antenna for microwave applications," Sensors, Vol. 21, No. 2, 477, Jan. 2021, doi: 10.3390/s21020477.
    doi:10.3390/s21020477

    24. Das, S., D. Mitra, and S. R. Bhadra Chaudhuri, "Staircase fractal loaded microstrip patch antenna for super wide band operation," Progress In Electromagnetics Research C, Vol. 95, 183-194, 2019.
    doi:10.2528/PIERC19070105

    25. Singhal, S., "Asymmetrically fed octagonal Sierpinski band-notched super-wideband antenna," Journal of Computational Electronics, Vol. 16, No. 1, 210-219, Mar. 2017, doi: 10.1007/s10825-016-0948-5.
    doi:10.1007/s10825-016-0948-5

    26. Mao, S.-G., J.-C. Yeh, and S.-L. Chen, "Ultrawideband circularly polarized spiral antenna using integrated balun with application to time-domain target detection," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 1914-1920, Jul. 2009.

    27. Kundu, S. and A. Chatterjee, "A compact super wideband antenna with stable and improved radiation using super wideband frequency selective surface," AEU --- International Journal of Electronics and Communications, Vol. 150, 154200, Jun. 2022, doi: 10.1016/j.aeue.2022.154200.
    doi:10.1016/j.aeue.2022.154200

    28. Sharma, V., Gunaram, J. K. Deegwal, and D. Mathur, "Super-wideband compact offset elliptical ring patch antenna for 5G applications," Wireless Personal Communications, Vol. 122, No. 2, 2022, doi: 10.1007/s11277-021-08965-4.
    doi:10.1007/s11277-021-08965-4

    29. Dey, S., M. S. Arefin, and N. C. Karmakar, "Design and experimental analysis of a novel compact and flexible super wide band antenna for 5G," IEEE Access, Vol. 9, 46698-46708, 2021, doi: 10.1109/ACCESS.2021.3068082.
    doi:10.1109/ACCESS.2021.3068082

    30. Singh, S., R. Varma, M. Sharma, and S. Hussain, "Superwideband monopole reconfigurable antenna with triple notched band characteristics for numerous applications in wireless system," Wireless Personal Communications, Vol. 106, No. 3, 987-999, Jun. 2019, doi: 10.1007/s11277-019-06199-z.
    doi:10.1007/s11277-019-06199-z

    31. Tang, M.-C., R. W. Ziolkowski, and S. Xiao, "Compact hyper-band printed slot antenna with stable radiation properties," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 2962-2969, Jun. 2014, doi: 10.1109/TAP.2014.2314299.
    doi:10.1109/TAP.2014.2314299

    32. Haraz, O. M., A.-R. Sebak, and S. A. Alshebeili, "Design of a printed log-periodic dipole array antenna with high gain for millimeter-wave applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 3, 185-193, Mar. 2015, doi: 10.1002/mmce.20848.
    doi:10.1002/mmce.20848