Vol. 120
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-05-07
Minimizing Grating Lobes in Large Arrays Using Clustered Amplitude Tapers
By
Progress In Electromagnetics Research C, Vol. 120, 93-103, 2022
Abstract
One of the common ways to design large arrays is by designing a small subarray known as cluster and using it as a repeating element throughout a large array. In this paper, the genetic algorithm is used to optimize the clustered amplitude tapers such that the final array pattern has minimum grating lobes and controlled sidelobe level. The formulation of the synthesis problem includes the minimization of the excess magnitude of the grating lobes or peak sidelobes which are usually higher than a given allowable limit. Moreover, two clustered configurations based on increased/decreased number of elements per cluster around the array center are introduced. Correspondingly, their clustered sizes increase/decrease as they approach the center of the array. Simulation results show that the proposed method has capability to optimize clustered linear and planar arrays without noticeable appearance of undesirable grating lobes. The analysis for an array composed of 20 elements with clusters of different cluster sizes M = 10, 8, 5, 4 and different numbers of elements per cluster Ns = 2, 3, 4, 5 elements found that the complexity reductions were 50%, 60%, 75%, 80%; peak sidelobe levels were -29 dB, -23.6 dB, -21.3 dB, -19.15 dB; and the directivities were 25.53 dB, 25.64 dB, 26.33 dB, 26.32 dB, respectively.
Citation
Jafar Ramadhan Mohammed, "Minimizing Grating Lobes in Large Arrays Using Clustered Amplitude Tapers," Progress In Electromagnetics Research C, Vol. 120, 93-103, 2022.
doi:10.2528/PIERC22031706
References

1. Mohammed, J. R., "Synthesizing sum and difference patterns with low complexity feeding network by sharing element excitations," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2563901, 7 pages, 2017.

2. Mohammed, J. R., "Obtaining wide steered nulls in linear array patterns by controlling the locations of two edge elements," AEU International Journal of Electronics and Communications, Vol. 101, 145-151, Mar. 2019.
doi:10.1016/j.aeue.2019.02.004

3. Mohammed, J. R. and K. H. Sayidmarie, "Synthesizing asymmetric sidelobe pattern with steered nulling in non-uniformly excited linear arrays by controlling edge elements," International Journal of Antennas and Propagation, Vol. 2017, Article ID 9293031, 8 pages, 2017.

4. Holden, J. M., "Grating lobe minimization in sum and difference beam patterns," IEEE International Symposium on Antennas and Propagation Society, Vol. 1, 772-775, Jun. 22-27, 2003.

5. Haupt, R., "Reducing grating lobes due to subarray amplitude tapering," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 8, 846-850, Aug. 1985.
doi:10.1109/TAP.1985.1143682

6. Brockett, T. J. and Y. Rahmat-Samii, "Subarray design diagnostics for the suppression of undesirable grating lobes," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1373-1380, Mar. 2012.
doi:10.1109/TAP.2011.2180333

7. Jeong, T., J. Yun, K. Oh, J. Kim, D. W. Woo, and K. C. Hwang, "Shape and weighting optimization of a subarray for a mm-Wave phased array antenna," Appl. Sci., Vol. 11, 6803, 2021, https://doi.org/10.3390/app11156803.
doi:10.3390/app11156803

8. Nickel, U., "Subarray con gurations for digital beamforming with low sidelobes and adaptive interference suppression," Proceedings of IEEE International Conference on Radar, Alexandria, 714-719, USA, 1995.
doi:10.1109/RADAR.1995.522636

9. Tarran, C., M. Mitchell, and R. Howard, "Wideband phased array radar with digital adaptive beamforming," High Resolution Radar and Sonar (Ref. No. 1999/051), 1/1-1/7, IEE Colloquium, May 11, 1999.

10. Manica, L., P. Rocca, and A. Massa, "Design of subarrayed linear and planar array antennas with SLL control based on an excitation matching approach," IEEE Transctions on Antennas and Propagtion, Vol. 57, No. 6, 1684-1691, Jun. 2009.
doi:10.1109/TAP.2009.2019914

11. Rocca, P., L. Manica, R. Azaro, and A. Massa, "A hybrid approach for the synthesis of sub-arrayed monopulse linear arrays," IEEE Transctions on Antennas and Propagtion, Vol. 57, No. 1, 280-283, Jan. 2009.
doi:10.1109/TAP.2008.2009776

12. Mailloux, R. J., S. G. Santarelli, T. M. Roberts, and D. Luu, "Irregular polyomino-shaped subarrays for space-based active arrays," International Journal of Antennas and Propagation, Vol. 2009, 1-9, 2009.
doi:10.1155/2009/956524

13. Abdulqader, A. J., J. R. Mohammed, and R. H. Thaher, "Antenna pattern optimization via clustered arrays," Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020.
doi:10.2528/PIERM20042307

14. Haupt, R., "Optimized weighting of uniform subarrays of unequal sizes," IEEE Transctions on Antennas and Propagation, Vol. 55, No. 4, 1207-1210, 2007.
doi:10.1109/TAP.2007.893406

15. Mohammed, J. R., "A method for thinning useless elements in the planar antenna arrays," Progress In Electromagnetics Research Letters, Vol. 97, 105-113, 2021.
doi:10.2528/PIERL21022104

16. Keizer, W. P. M., "Linear array thinning using iterative FFT techniques," IEEE Transctions on Antennas and Propagation, Vol. 56, No. 8, 2757-2760, 2008.
doi:10.1109/TAP.2008.927580

17. Mohammed, J. R., "Thinning a subset of selected elements for null steering using binary genetic algorithm," Progress In Electromagnetics Research M, Vol. 67, 147-157, 2018.
doi:10.2528/PIERM18021604

18. Rodriguez, A., L. Landesa, J. L. Rodriguez, F. Obelleiro, F. Ares, and A. Garcia-Pino, "Pattern synthesis of array antennas with arbitrary elements by simulated annealing and adaptive array theory," Microwave and Optical Technology Letters, Vol. 20, No. 1, 48-50, Jan. 5, 1999.
doi:10.1002/(SICI)1098-2760(19990105)20:1<48::AID-MOP13>3.0.CO;2-P

19. Lopez, P. and J. A. Rodriguez, "Subarray weighting for the difference patterns of monopulse antennas: Joint optimization of subarray con gurations and weights," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 11, 1606-1608, Nov. 2001.
doi:10.1109/8.964098

20. Mohammed, J. R., A. J. Abdulqader, and R. H. Thaher, "Array pattern recovery under amplitude excitation errors using clustered elements," Progress In Electromagnetics Research M, Vol. 98, 183-192, 2020.
doi:10.2528/PIERM20101906

21. Balanis, C. A., Antenna Theory, Analysis and Design, 4th Edition, Wiley, 2016.