Vol. 121

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-06-30

Correlation Between Elements of a Massive MIMO Antenna in a Sub-6 GHz Mobile Terminal

By Ahmed Mohamed Elshirkasi, Azremi Abdullah Al-Hadi, Rizwan Khan, and Ping Jack Soh
Progress In Electromagnetics Research C, Vol. 121, 83-95, 2022
doi:10.2528/PIERC22033105

Abstract

This work studies the correlation between 14-elements of a sub-6 GHz MIMO antenna for mobile terminal, operating in the 3.10 to 3.85 GHz frequency band. Envelope correlation coefficient (ECC) was used to assess the relationship between MIMO antenna elements. A total of 91 ECC values were considered at every frequency point for the 14-element antenna, which was performed under two propagation scenarios: (i) a uniform environment, and (ii) a Gaussian environment. For the latter, three angular spreads (AS) of 20˚, 30˚, and 40˚ and incident angle of every 10˚ in both elevation and azimuth coordinates are considered. The resulting ECC in the uniform environment is below 0.15 over the entire operating frequency band, indicating that the 14 elements are minimally correlated. However, in a Gaussian environment, the ECC is evaluated at 3.25 GHz. For the AS values of 20˚, 30˚, and 40˚. The average number of ECC values below the 0.3 threshold is 48, 67, and 81 out of 91 total ECC values, respectively. Finally, a relation is derived between the number of ECC values below 0.3 and the lowly-correlated number of antenna elements. It is seen that at a wider angular spread of 40˚, the number of equivalent lowly-correlated elements is 12 with 87% from all considered incident wave directions.

Citation


Ahmed Mohamed Elshirkasi, Azremi Abdullah Al-Hadi, Rizwan Khan, and Ping Jack Soh, "Correlation Between Elements of a Massive MIMO Antenna in a Sub-6 GHz Mobile Terminal," Progress In Electromagnetics Research C, Vol. 121, 83-95, 2022.
doi:10.2528/PIERC22033105
http://www.jpier.org/PIERC/pier.php?paper=22033105

References


    1. Kim, Y., et al., "Feasibility of mobile cellular communications at millimeter wave frequency," IEEE J. Sel. Top. Signal Process., Vol. 10, No. 3, 589-599, 2016.
    doi:10.1109/JSTSP.2016.2520901

    2. Shafique, K., B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, "Internet of Things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios," IEEE Access, Vol. 8, 23022-23040, 2020.
    doi:10.1109/ACCESS.2020.2970118

    3. Fan, W., X. Carreno, P. Kyosti, and J. O. Nielsen, "Over-the-Air testing of MIMO-capable terminals,", No. June, 38-46, 2015.

    4. Rohani, B., K. Takahashi, H. Arai, Y. Kimura, and T. Ihara, "Improving channel capacity in indoor 4 x 4 MIMO base station utilizing small bidirectional antenna," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 393-400, 2018.
    doi:10.1109/TAP.2017.2771951

    5. Ahmad, S., et al., "A compact CPW-fed ultra-wideband Multi-Input-Multi-Output (MIMO) antenna for wireless communication networks," IEEE Access, 2022.

    6. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]," IEEE Antennas Propag. Mag., Vol. 59, No. 2, 162-170, 2017.
    doi:10.1109/MAP.2017.2658346

    7. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]," IEEE Antennas Propag. Mag., Vol. 55, No. 5, 218-232, 2013.
    doi:10.1109/MAP.2013.6735522

    8. Li, H., Z. T. Miers, and B. K. Lau, "Design of orthogonal MIMO handset antennas based on characteristic mode manipulation at frequency bands below 1 GHz," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2756-2766, 2014.
    doi:10.1109/TAP.2014.2308530

    9. Abdullah, M., et al., "High-performance multiple-input multiple-output antenna system for 5G mobile terminals," Electronics, Vol. 8, No. 10, 1090, 2019.
    doi:10.3390/electronics8101090

    10. Ban, Y.-L., C. Li, G. Wu, and K.-L. Wong, "4G/5G multiple antennas for future multi-mode smartphone applications," IEEE Access, Vol. 4, 2981-2988, 2016.
    doi:10.1109/ACCESS.2016.2582786

    11. Yang, Y., R. S. Blum, and S. Sfar, "Antenna selection for MIMO systems with closely spaced antennas," EURASIP J. Wirel. Commun. Netw., Vol. 2009, 1-11, 2009.

    12. Wong, K. and J. Lu, "3.6-GHz 10-antenna array for MIMO operation in the smartphone," Microw. Opt. Technol. Lett., Vol. 57, No. 7, 1699-1704, 2015.
    doi:10.1002/mop.29181

    13. Deng, J., J. Yao, D. Sun, and L. Guo, "Ten-element MIMO antenna for 5G terminals," Microw. Opt. Technol. Lett., Vol. 60, No. 12, 3045-3049, 2018.
    doi:10.1002/mop.31404

    14. Hu, W., et al., "Dual-band ten-element MIMO array based on dual-mode IFAs for 5G terminal applications," IEEE Access, Vol. 7, 178476-178485, 2019.
    doi:10.1109/ACCESS.2019.2958745

    15. Li, Y., Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2018.
    doi:10.1109/ACCESS.2017.2763161

    16. Li, M.-Y., Y.-L. Ban, Z.-Q. Xu, J. Guo, and Z.-F. Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2017.

    17. Wang, H. and G. Yang, "Compact side-edge frame printed fourteen-element antenna array for triple-band MIMO operations in the 5G smartphone," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2019.

    18. Wong, K., J. Lu, L. Chen, W. Li, and Y. Ban, "8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microw. Opt. Technol. Lett., Vol. 58, No. 1, 174-181, 2016.
    doi:10.1002/mop.29527

    19. Tsai, C., K. Wong, and W. Li, "Experimental results of the multi-Gbps smartphone with 20 Multi-Input Multi-Output (MIMO) antennas in the 20 x 12 MIMO operation," Microw. Opt. Technol. Lett., Vol. 60, No. 8, 2001-2010, 2018.
    doi:10.1002/mop.31289

    20. Zhao, K., Z. Ying, S. Zhang, and G. Pedersen, "User body effects on mobile antennas and wireless systems of 5G communication," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, 2020.

    21. Buskgaard, E., A. Tatomirescu, S. C. Del Barrio, O. Franek, and G. F. Pedersen, "User effect on the MIMO performance of a dual antenna LTE handset," 2014 8th European Conference on Antennas and Propagation (EuCAP), 2006-2009, 2014.
    doi:10.1109/EuCAP.2014.6902199

    22. Tian, R., B. K. Lau, and Z. Ying, "Multiplexing efficiency of MIMO antennas in arbitrary propagation scenarios," 2012 6th European Conference on Antennas and Propagation (EUCAP), 373-377, 2012.
    doi:10.1109/EuCAP.2012.6205897

    23. Kyosti, P., "WINNER II channel models," IST, Tech. Rep. IST-4-027756 Win. II D1. 1.2 V1. 2, 2007.

    24. Vasilev, I., V. Plicanic, and B. K. Lau, "Impact of antenna design on MIMO performance for compact terminals with adaptive impedance matching," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1454-1465, 2016.
    doi:10.1109/TAP.2016.2521885

    25. Guo, J., L. Cui, C. Li, and B. Sun, "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7412-7417, 2018.
    doi:10.1109/TAP.2018.2872130

    26. Li, Y., Y. Luo, and G. Yang, "Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones," IEEE Access, Vol. 6, 28041-28053, 2018.
    doi:10.1109/ACCESS.2018.2838337

    27. Elshirkasi, A. M., et al., "Numerical analysis of users' body effects on a fourteen-element dual-band 5G MIMO mobile terminal antenna," IEEE Access, 2021.

    28. Elshirkasi, A. M., et al., "Performance study of a MIMO mobile terminal with upto 18 elements operating in the sub-6 GHz 5G band with user hand," IEEE Access, Vol. 8, 28164-28177, 2020.
    doi:10.1109/ACCESS.2020.2971561

    29. Jaglan, N., S. D. Gupta, and M. S. Sharawi, "18 element massive MIMO/diversity 5G smartphones antenna design for sub-6 GHz LTE bands 42/43 applications," IEEE Open J. Antennas Propag., Vol. 2, 533-545, 2021.
    doi:10.1109/OJAP.2021.3074290

    30. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, 2003.
    doi:10.1049/el:20030495

    31. Stjernman, A., "Relationship between radiation pattern correlation and scattering matrix of lossless and lossy antennas," Electron. Lett., Vol. 41, No. 12, 1, 2005.
    doi:10.1049/el:20050988

    32. Sharawi, M. S., A. T. Hassan, and M. U. Khan, "Correlation coefficient calculations for MIMO antenna systems: A comparative study," Int. J. Microw. Wirel. Technol., Vol. 9, No. 10, 1991-2004, 2017.
    doi:10.1017/S1759078717000903

    33. Azremi, A. A.-H., et al., "Coupling element-based dual-antenna structures for mobile terminal with hand effects," Int. J. Wirel. Inf. Networks, Vol. 18, No. 3, 146-157, 2011.
    doi:10.1007/s10776-011-0154-0

    34. Elshirkasi, A. M., A. A. Al-Hadi, M. F. Mansor, R. Khan, and P. J. Soh, "Envelope correlation coefficient of a two-Port MIMO terminal antenna under uniform and Gaussian angular power spectrum with user's hand effect," Progress In Electromagnetics Research C, Vol. 92, 123-136, 2019.
    doi:10.2528/PIERC19011006

    35. Tounou, C. A., C. Decroze, D. Carsenat, T. Monediere, and B. Jecko, "Mobile communication antennas in uniform and Gaussian propagation channels,", 2007.

    36. Singh, H. S., B. R. Meruva, G. K. Pandey, P. K. Bharti, and M. K. Meshram, "Low mutual coupling between MIMO antennas by using two folded shorting strips," Progress In Electromagnetics Research, Vol. 53, 205-221, 2013.
    doi:10.2528/PIERB13052305