Vol. 121
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-07-26
A Broadband CPW-FCL Gyrator
By
Progress In Electromagnetics Research C, Vol. 121, 233-242, 2022
Abstract
In this paper, a novel wideband gyrator based on a ferrite coupled line design approach and realized in coplanar waveguide configuration is presented. The ferrite coupled lines are proved to demonstrate typical unique properties. The design of the optimum coupled lines has shown an almost 1 dB/3 dB insertion loss for even/odd modes excitation, respectively. Also, for single excitation, the power is divided at output ports with insertion loss almost equal to 3 dB and 5 dB, good matching and isolation between output ports (less than -15 dB). The bandwidth of the designed coupler is proved over the bandwidth of 7 GHz-11 GHz. As an application, a novel gyrator is introduced and covers the same coupler bandwidth. The performance of the gyrator is optimized using full-wave simulations.
Citation
Mahmoud Abdalla, and Zhirun Hu, "A Broadband CPW-FCL Gyrator," Progress In Electromagnetics Research C, Vol. 121, 233-242, 2022.
doi:10.2528/PIERC22042103
References

1. Lax, B. and K. J. Buton, Microwave Ferrites and Ferrimagnetics, McGraw-Hill, New York, USA, 1962.

2. Fuller, A. J. B., Ferrites at Microwave Frequencies, Peregrinus, London, U.K., 1987.

3. Harris, V. G., "Modern microwave ferrites," IEEE Trans. on Magn., Vol. 48, No. 3, 1075-1104, 2011.

4. Pozar, D. M., Microwave Engineering, Addison-Wesley, Reading, MA, 1990.

5. Hines, M. E., "Reciprocal and nonreciprocal modes of propagation in ferrite stripline and microstrip devices," IEEE Trans. Microw. Th. & Tech., Vol. 19, No. 5, 442-451, 1971.

6. Webb, D. C., "Microwave magnetic thin-film devices," IEEE Trans. Magn., Vol. 24, No. 6, 2799-2804, 1988.

7. Adam, J. D., L. E. Davis, G. F. Dionne, E. F. Schloemann, and S. N. Stitzer, "Ferrite devices and materials," IEEE Trans. Microw. Th. & Tech., Vol. 50, No. 3, 721-737, 2002.

8. Geiler, A. and V. Harris, "Atom magnetism: Ferrite circulators --- Past, present, and future," IEEE Microwave Magazine, Vol. 15, No. 6, 66-72, 2014.

9. Linkhart, D., Microwave Circulator Design, Artech House Microwave Library, Artech House, Norwood, MA, 1989.

10. Shams, S. I., M. Elsaadany, and A. A. Kishk, "Including stripline modes in the Y-junction circulators: Revisiting fundamentals and key design equations," IEEE Trans. Microw. Th. & Tech., Vol. 67, No. 1, 94-107, 2018.

11. Hord, W. E., C. R. Boyd, and D. Diaz, "A new type of fast-switching dual-mode ferrite phase shifter," IEEE Trans. Microw. Th. & Tech., Vol. 35, No. 12, 1219-1225, 1987.

12. Peng, B., H. Xu, H. Li, W. Zhang, Y. Wang, and W. Zhang, "Self-biased microstrip junction circulator based on barium ferrite thin films for monolithic microwave integrated circuits," IEEE Trans. Magn., Vol. 47, No. 6, 1674-1677, 2011.

13. Wang, J., A. Yang, Y. Chen, Z. Chen, A. Geiler, S. M. Gillette, G. H. Vincent, and C. Vittoria, "Self-biased Y-junction circulator at Ku band," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 6, 292-294, 2011.

14. Laur, V., G. Vérissimo, P. Quéffélec, L. A. Farhat, H. Alaaeddine, E. Laroche, G. Martin, R. Lebourgeois, and J. Ganne, "Self-biased Y-junction circulators using lanthanum-and cobalt- substituted strontium hexaferrites," IEEE Trans. Microw. Th. & Tech., Vol. 63, No. 12, 4376-4381, 2015.

15. Spiegel, J., J. de la Torre, M. Darques, L. Piraux, and I. Huynen, "Permittivity model for ferromagnetic nanowired substrates," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 7, 492-494, 2007.

16. Saib, A., M. Darques, L. Piraux, D. Vanhoenacker-Janvier, and I. Huynen, "An unbiased integrated microstrip circulator based on magnetic nanowired substrate," IEEE Trans. Microw. Th. & Tech., Vol. 53, No. 6, 2043-2049, 2005.

17. Cheng, Y. J., Q. D. Huang, Y. R. Wang, and J. L.-W. Li, "Narrowband substrate integrated waveguide isolators," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 10, 698-700, 2014.

18. Beguhn, S., X. Yang, and N. X. Sun, "Wideband ferrite substrate integrated waveguide isolator using shape anisotropy," J. Appl. Phys., Vol. 115, 17E503-1-17E503-3, 2014.

19. D'Orazio, W. and K. Wu, "Substrate-integrated-waveguide circulators suitable for millimeter-wave integration," IEEE Trans. Microw. Th. & Tech., Vol. 54, No. 10, 3675-3680, 2006.

20. Martinez, L., V. Laur, A. L. Borja, P. Queffelec, and A. Belenguer, "Low loss ferrite Y-junction circulator based on empty substrate integrated coaxial line at Ku-band," IEEE Access, Vol. 7, 104789-104796, 2019.

21. Elshafiey, T. M. F., J. T. Aberle, and E.-B. El-Sharawy, "Full wave analysis of edge-guided mode microstrip isolator," IEEE Trans. Microw. Th. & Tech., Vol. 44, No. 12, 2661-2668, 1996.

22. Marynowski, W., R. Lech, and J. Mazur, "Edge-guided mode performance and applications in nonreciprocal millimeter-wave gyroelectric components," IEEE Trans. Microw. Th. & Tech., Vol. 65, No. 12, 4883-4892, 2017.

23. Koshiji, K. and E. Shu, "Circulators using coplanar waveguide," Elect. Letters, Vol. 22, No. 19, 1000-1002, 1986.

24. Bayard, B., D. Vincent, C. R. Simovski, and G. Noyel, "Electromagnetic study of a ferrite coplanar isolator suitable for integration," IEEE Trans. Microw. Th. & Tech., Vol. 51, No. 7, 1809-1814, 2003.

25. Abdalla, M. A. and Z. Hu, "Composite right/left-handed coplanar waveguide ferrite forward coupled-line coupler," IET Microw., Ant. & Propaga., Vol. 9, No. 10, 1104-1111, 2015.

26. Abdalla, M. A. and Z. Hu, "Reconfigurable/tunable dual band/dual mode ferrite composite right/left-handed CPW coupled-line coupler," J. of Instrumentation, Vol. 12, No. 9, P09009, 2017.

27. Joseph, S., R. Lebourgeois, Y. Huang, L. Roussel, and A. Schuchinsky, "Low-loss hexaferrite self-biased microstrip and CPW circulators," Proc. in IEEE 2019 13rd Int. Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), X-372, 2019.

28. Davis, L. and D. B. Sillars, "Millimetric nonreciprocal coupled-slot finline components," IEEE Trans. Microw. Th. & Tech., Vol. 34, No. 7, 804-808, 1986.

29. Michalski, J., M. Mazur, and J. Mazur, "Scattering in a section of ferrite-coupled microstrip lines: Theory and application in nonreciprocal devices," IEE Proc. --- Microw., Antennas and Propagation, Vol. 149, No. 56, 286-290, 2002.

30. Yang, L.-Y. and K. Xie, "Periodically non-uniform coupled microstrip lines on longitudinally-magnetised ferrite," Elect. Letters, Vol. 45, No. 5, 268-270, 2009.

31. Mazur, J., M. Mazur, J. Michalski, and E. Sedek, "Isolator using a ferrite-coupled-lines gyrator," IEE Proc. --- Microw., Antennas and Propagation, Vol. 149, No. 56, 291-294, 2002.

32. Marynowski, W., A. Kusiek, and J. Mazur, "Microstrip ferrite coupled line isolators," Proc. Int. Conf. on Microwaves, Radar & Wireless Communications, 342-345, 2006.

33. Mazur, J., M. Solecka, R. Poltorak, and M. Mazur, "Theoretical and experimental treatment of a microstrip coupled ferrite line circulator," IEE Proc. --- Microw., Antennas and Propagation, Vol. 151, No. 6, 477-480, 2004.

34. Queck, C. K. and L. E. Davis, "Dually magnetised stripline ferrite coupled line (FCL) section," Elect. Letters, Vol. 39, No. 5, 439-440, 2003.

35. Queck, C. K., L. E. Davis, K. Xie, K. Newsome, B. Climer, and N. E. Priestley, "Performance of stripline-type ferrite coupled line circulators," Int. J. of RF and Microw. Computer-Aided Engineering, Vol. 13, No. 3, 173-179, 2003.

36. Queck, C. K. and L. E. Davis, "Broad-band three-port and four-port stripline ferrite coupled line circulators," IEEE Trans. Microw. Th. & Tech., Vol. 52, No. 2, 625-632, 2004.

37. Kusiek, A., W. Marynowski, and J. Mazur, "Cylindrical ferrite coupled slotline junction for Faraday nonreciprocal devices," Proc. 19th Int. Conf. on Microwaves, Radar & Wireless Communications, 699-702, 2012.

38. Abdalla, M. A. and Z. Hu, "Ferrite-coupled coplanar waveguide," IEEE Transs. on Magnetics, Vol. 44, No. 11, 3099-3102, 2008.

39. Abdalla, M. A. and Z. Hu, "Compact novel CPW ferrite coupled line circulator with left-handed power divider/combiner," Proc. 41st European Microwave Conf., 794-497, 2011.

40. Marynowski, W. and J. Mazur, "Investigations of multilayer three-strip coplanar lines with the ferrite material," Proc. 18th Int. Conf. on Microwaves, Radar & Wireless Communications, 1-3, 2010.

41. Kusiek, A., W. Marynowski, and J. Mazur, "Nonreciprocal properties of elliptical ferrite coupled line junction," Proc. 21st Int. Conf. on Microwaves, Radar & Wireless Communications, 1-4, 2016.

42. Marynowski, W., A. Kusiek, and J. Mazur, "Four-port circulator using reduced ground plane ferrite coupled line junction," Proc. 8th European Conf. on Ant. & Propaga. (EuCAP 2014), 903-906, 2014.

43. Mazur, J. and M. Mrozowski, "On the mode coupling in longitudinally magnetized waveguiding structures," IEEE Trans. Microw. Th. & Tech., Vol. 37, No. 1, 159-165, 1989.

44. Mazur, J. and M. Mrozowski, "Nonreciprocal operation of structures comprising a section of coupled ferrite lines with longitudinal magnetization," IEEE Trans. Microw. Th. & Tech., Vol. 37, No. 6, 1012-1020, 1989.

45. Teoh, C. S. and L. E. Davis, "Normal-mode analysis of ferrite-coupled lines using microstrips or slotlines," IEEE Trans. Microw. Th. & Tech., Vol. 43, No. 2, 2991-2998, 1995.

46. Teoh, C. S. and L. E. Davis, "Normal-mode analysis of coupled-slots with an axially-magnetized ferrite substrate," Proc. Int. Conf. Microw. Symposium, 99-102, Orlando, USA, May 1995.

47. Xie, K. and L. E. Davis, "Nonreciprocity and the optimum operation of ferrite coupled lines," IEEE Trans. Microw. Th. & Tech., Vol. 48, No. 4, 562-573, 2000.

48. Mazur, J., M. Mazur, J. Michalski, and E. Sedek, "Development of ferrite coupled lines gyrator," Proc. 14th Int. Conf. on Microwaves, Radar & Wireless Communications, Vol. 1, 245-248, 2002.