Vol. 124
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-16
Development of an IR-UWB Radar System for High-Resolution through -Wall Imaging
By
Progress In Electromagnetics Research C, Vol. 124, 81-96, 2022
Abstract
Through-Wall-Imaging (TWI) radar offers considerable advantages for applications that require safety and security, such as disaster survivor rescue and tracking terrorist activities. In such situations, the use of an impulse UWB radar system is constantly increasing due to its ability to provide precise images of hidden targets in a short period of time. This paper presents a new radar system for through-wall imaging using an impulse-radio ultra-wideband (IR-UWB) signal. The radar system is built using a field-programmable gate array (FPGA) board, an oscilloscope, and Vivaldi antennas. The radar system transmits impulse signals, which have a monocycle shape with a 400-picosecond duration and a 4.6 GHz bandwidth. The FPGA board is used to produce impulse signals that have a short time duration in the sub-nanosecond range in order to expand the bandwidth of the generated signal and make the developed radar capable of providing high-resolution images. The FPGA-based implementation of the IR-UWB generator offers the flexibility to modify the spectrum characteristics of the generated signal. The receiver side of the radar system collects the echoes using the principle of synthetic aperture radar (SAR), and then the time-domain back-projection algorithm is applied to the radar echo to form 2D images. An indoor imaging experiment was carried out with two human targets to investigate the imaging capability of the designed IR-UWB radar. The obtained experimental results demonstrate that this radar has the potential to deliver high-resolution images of multiple human targets and identify their locations.
Citation
Mohamed Saad, Abdelmadjid Maali, Mohamed Salah Azzaz, Azzedine Bouaraba, and Mustapha Benssalah, "Development of an IR-UWB Radar System for High-Resolution through -Wall Imaging," Progress In Electromagnetics Research C, Vol. 124, 81-96, 2022.
doi:10.2528/PIERC22060206
References

1. Nkwari, P. K. M., S. Sinha, and H. C. Ferreira, "Through-the-wall radar imaging: A review," IETE Technical Review, Vol. 35, No. 6, 631-639, 2017.
doi:10.1080/02564602.2017.1364146

2. Verma, P., A. Gaikwad, D. Singh, and M. Nigam, "Analysis of clutter reduction techniques for through wall imaging in UWB range," Progress In Electromagnetics Research B, Vol. 17, 29-48, 2009.
doi:10.2528/PIERB09060903

3. Wu, Y., F. Shen, D. Xu, and R. Liu, "An ultra-wideband antenna with low dispersion for ground penetrating radar system," IEEE Sensors Journal, Vol. 21, No. 13, 15171-15179, 2021.
doi:10.1109/JSEN.2021.3068522

4. Selvaraj, V., J. B. J. J. Sheela, R. Krishnan, L. Kandasamy, and S. Devarajulu, "Detection of depth of the tumor in microwave imaging using ground penetrating radar algorithm," Progress In Electromagnetics Research M, Vol. 96, 191-202, 2020.
doi:10.2528/PIERM20062201

5. Song, Y., J. Hu, N. Chu, T. Jin, J. Zhang, and Z. Zhou, "Building layout reconstruction in concealed human target sensing via UWB MIMO through-wall imaging radar," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 8, 1199-1203, 2018.
doi:10.1109/LGRS.2018.2834501

6. Zadeh, A. T., M. Diyap, J. Moll, and V. Krozer, "Towards localization and classification of birds and bats in windparks using multiple FMCW-radars at Ka-band," Progress In Electromagnetics Research M, Vol. 109, 1-12, 2022.
doi:10.2528/PIERM21110502

7. Gao, Z., Y. Jia, S. Liu, and X. Zhang, "Development of ground-based SFCW-ArcSAR system and investigation on point target response," Progress In Electromagnetics Research M, Vol. 109, 137-148, 2022.
doi:10.2528/PIERM21121702

8. Mahfouz, M., A. Fathy, Y. Yang, E. E. Ali, and A. Badawi, "See-through-wall imaging using ultra wideband pulse systems," 34th Applied Imagery and Pattern Recognition Workshop (AIPR'05), Washington, DC, USA, 2005.

9. Wang, Y., Q. Liu, and A. E. Fathy, "CW and pulse-Doppler radar processing based on FPGA for human sensing applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 5, 3097-3107, 2012.

10. Crowgey, B. R., E. J. Rothwell, L. C. Kempel, and E. L. Mokole, "Comparison of UWB short-pulse and stepped-frequency radar systems for imaging through barriers," Progress In Electromagnetics Research, Vol. 110, 403-419, 2010.
doi:10.2528/PIER10091306

11. Yang, D., Z. Zhu, J. Zhang, and B. Liang, "The overview of human localization and vital sign signal measurement using handheld IR-UWB through-wall radar," Sensors, Vol. 21, No. 2, 402, 2021.
doi:10.3390/s21020402

12. Sadoudi, S., M. S. Azzaz, M. Djeddou, and M. Benssalah, "An FPGA real-time implementation of the Chen's chaotic system for securing chaotic communications," International Journal of Nonlinear Science, Vol. 7, No. 4, 467-474, 2009.

13. Lee, Y. C., Y. K. Chan, and V. Koo, "Design and implementation of field-programmable gate array based fast Fourier transform co-processor using verilog hardware description language," Progress In Electromagnetics Research B, Vol. 92, 47-70, 2021.
doi:10.2528/PIERB20122806

14. Sharma, R., O. Yurduseven, B. Deka, and V. Fusco, "Hardware enabled acceleration of near-field coded aperture radar physical model for millimetre-wave computational imaging," Progress In Electromagnetics Research B, Vol. 90, 91-108, 2021.
doi:10.2528/PIERB20112305

15. Yang, Y. and A. E. Fathy, "Development and implementation of a real-time see-through-wall radar system based on FPGA," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1270-1280, 2009.
doi:10.1109/TGRS.2008.2010251

16. Chua, M. Y. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.
doi:10.2528/PIER09100301

17. Firmansyah, I. and Y. Yamaguchi, "FPGA-based implementation of a chirp signal generator using an OpenCL design," Microprocessors and Microsystems, Vol. 77, 103199, 2020.
doi:10.1016/j.micpro.2020.103199

18. Park, Y. and D. D. Wentzloff, "All-digital synthesizable UWB transmitter architectures," IEEE International Conference on Ultra-Wideband, Vol. 2, 29-32, 2008.

19. Duraiswamy, P., X. Li, J. Bauwelinck, J. Vandewege, P. Vaes, and S. Teughels, "Synchronous delay based UWB pulse generator in FPGA," IEICE Electronics Express, Vol. 9, No. 9, 868-873, 2012.
doi:10.1587/elex.9.868

20. Saad, M., A. Maali, M. S. Azzaz, and I. Kakouche, "An experimental platform of impulse UWB radar for through-wall imaging based on FPGAs," International Conference on Communications Control Systems and Signal Processing, 198-201, 2020.

21. Tantiparimongkol, L. and P. Phasukkit, "IR-UWB pulse generation using FPGA scheme for through obstacle human detection," Sensors, Vol. 20, No. 13, 3750, 2020.
doi:10.3390/s20133750

22. Hu, B. and N. C. Beaulieu, "Pulse shapes for ultrawideband communication systems," IEEE Transactions on Wireless Communications, Vol. 4, No. 4, 1789-1797, 2005.
doi:10.1109/TWC.2005.850311

23. Chen, X. and S. Kiaei, "Monocycle shapes for ultra wideband system," 2002 IEEE International Symposium on Circuits and Systems (ISCAS), Phoenix-Scottsdale, AZ, USA, 2002.

24. Skolnik, M. I., Radar Handbook, McGraw-Hill, New York, 1970.

25. Cui, G., L. Kong, and J. Yang, "A back-projection algorithm to stepped-frequency synthetic aperture through-the-wall radar imaging," IEEE 1st Asian and Pacific Conference on Synthetic Aperture Radar, APSAR 2007, 123-126, 2007.

26. Soumekh, M., Synthetic Aperture Radar Signal Processing with Matlab Algorithms, Wiley, New York, NY, 1999.

27. Barrie, G., "Ultra-wideband synthetic aperture imaging: Data and image processing," Defence RD Canada-Ottawa, Ottawa, 2003.

28. Jin, T., B. Chen, and Z. Zhou, "Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 3, 1836-1843, 2012.
doi:10.1109/TGRS.2012.2206395

29. Ahmad, F., Y. Zhang, and M. G. Amin, "Three-dimensional wideband beamforming for imaging through a single wall," IEEE Geoscience and Remote Sensing Letters, Vol. 5, 176-179, 2008.
doi:10.1109/LGRS.2008.915742

30. X. Inc. 7 series FPGAs GTX/GTH transceivers user guide, Xilinx, 2015.

31. X. Inc. Kintex-7 FPGA KC705 Evaluation Kit, Xilinx, 2012.

32. Tahar, Z., X. Derobert, and M. Benslama, "An ultra-wideband modified vivaldi antenna applied to through the ground and wall imaging," Progress In Electromagnetics Research B, Vol. 86, 111-122, 2018.
doi:10.2528/PIERC18051502

33. Wang, Y. and A. E. Fathy, "Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 5, 1986-2000, 2011.
doi:10.1109/TGRS.2011.2170694

34. Dehmollaian, M., M. Thiel, and K. Sarabandi, "Through-the-wall imaging using differential SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1289-1296, 2009.
doi:10.1109/TGRS.2008.2010052